置换群的秩
设G是Ω上的一个传递置换群,α∈Ω,G对α的稳定子群Gα作为Ω上的置换群,其轨道(包括平凡轨道{α})数称为G的秩。显然,当且仅当G的秩等于2时,G是双传递的。秩为 3的单传递群是一类很重要的单传递群,在26个零散单群中,有8个是作为秩是3的置换群构造出来的群。
本原性设G是Ω上一个传递群,若G没有非平凡区, 则称G是一个本原群,否则称为非本原群。多重传递群一定是本原群,Ω上传递群G是本原群的充分必要条件为其稳定子群Gα(α∈Ω)是G的极大子群。如果Ω上一个置换群G是k重传递的,并且对k-1个点的稳定子群在其余的点上是本原的,那么G称为k重本原的。
1、封闭性:群内任意两个元素或两个以上的元素(相同的或不同的)的结合(积)都是该集合的一个元素。即假设对于群G操作(运算)是*,对于G里的任意元素a,b,那么a*b和b*a都必须是G的元素。?
2、结合律:虽然群元素不一定要求满足交换律,但必须满足结合律,即对G中任意元素a,b,c都有 (a*b)*c=a*(b*c)。
3、单位元素(幺元):集合G内存在一个单位元素e,它和集合中任何一个元素的积都等于该元素本身,即对于G中每个元素a都有 e*a=a*e=a。
4、逆元素:对G中每个元素a在G中都有元素a^(-1),使 a^(-1)*a=a*a^(-1)=e。
扩展资料:
一、循环群
循环群是—种很重要的群,也是目前已被完全解决了的—类群。其定义为若—个群G的每—个元都是G的某—个固定元a的乘方,则称G为循环群,记作G=(a),a称为G的—个生成元。循环群有无阶循环群和有阶循环群两种类型。
二、置换群
n元对称群的任意一个子群,都叫做一个n元置换群,简称置换群。
置换群是最早研究的一类群,是十分重要的群,每个有限的抽象群都与一个置换群同构,也就是说,所有的有限群都可以用它来表示。
由有限集合各元素的置换*所构成的群*。它是一种重要的有限群。
每个代数方程,都有由它的根的置换所形成的置换群存在;伽罗华*利用置换群的性质,给出了方程可用根式求解的充要条件。
由n个元素的集合中各元素的全部置换所构成的群,称为n阶对称群。讨论正n边形绕中心的对称,就得到一个对称群。
百度百科-群
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!