“数学期望”是什么意思?
数学期望(mean)是最基本的数学特征之一,运用于概率论和统计学中,它是每个可能结果的概率乘以其结果的总和。它反映了随机变量的平均值。
需要注意的是,期望并不一定等同于常识中的“期望”——“期望”未必等于每一个结果。期望值是变量输出值的平均值。期望不一定包含在变量的输出值集合中。
大数定律规定,当重复次数接近无穷大时,数值的算术平均值几乎肯定会收敛到期望值。
扩展资料:
应用:
1、经济决策
假设超市销售某一商品,周需求x的取值范围为10-30,商品的采购量取值范围为10-30。超市每售出一件商品可获利500元。如果供过于求,就会降价,每加工一件商品就要亏损10元。0元;如果供过于求,可以从其他超市转手。此时,超市商品可获利300元。超市在计算进货量时,能得到最大的利润吗?得到最大利润的期望值。
分析:由于商品的需求(销售量)x是一个随机变量,它在区间[10,30]上均匀分布,而商品的销售利润值y也是一个随机变量。它是x的函数,称为随机变量函数。问题涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,求解该问题的过程是确定y与x之间的函数关系,然后求出y的期望e(y),最后用极值法求出e(y)的最大点和最大值。
2、竞争问题
乒乓球是我们的国球,上个世纪的军事球也给中国带来了一些外交。中国在这项运动中具有绝对优势。本文提出了一个关于乒乓球比赛安排的问题:假设德国(德国选手波尔在中国也有很多球迷)和中国打乒乓球。有两种竞赛制度,一种是每方三名优胜者,另一种是每方五名优胜者,另一种是每方五名优胜者。哪一个对中国队更有利?
百度百科-数学期望
概率论八大分布的期望和方差如下:
一、离散型分布:
1.0-1分布 B(1,p):均值为p,方差为pq。?
2.二项分布B(n,p):均值为np,方差为npq。
3.泊松分布P(λ):均值为λ,方差为λ。
4.几何分布GE(p):均值。
二、连续型分布:
1.均匀分布U(a,b):均值为(a+b)/2,方差为(a-b)^2/12。
2.正态分布N(μ,σ):均值:μ,方差:σ。
3.指数分布E(λ):均值1/λ,方差:1/λ^2。
4.卡方分布χ^2(n):均值n,方差2n。
概率论与数理统计简介:
概率论与数理统计课程既是数学与应用数学和信息与计算科学专业的专业必修课,也是非数学类各专业的一门重要的基础数学课程。作为现代数学的一个重要分支,它主要研究自然界、人类社会及技术过程中大量随机现象的统计性规律。
其理论与方法不仅被广泛应用于自然科学、社会科学、管理科学以及工农业生产中,而且不断地与其它学科相互融合和渗透。
该课程在培养学生的理性精神、逻辑推理能力、抽象思维能力、随机事件应对能力、处理数据能力和综合素质等方面有着独特和不可替代的作用,对实现各类专业培养研究型、探索型、创新型人才提供了科学研究和基础实践的平台。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!