细菌细胞中,染色体DNA和质粒DNA在质粒提取过程中发生了什么变化?该变化对质粒检测和分离有什么利用价值
碱性条件下,染色体DNA双螺旋结构解开而变性,质粒DNA的氢键断裂但两条互补链彼此缠绕。恢复中性时,染色体DNA难以复性,质粒DNA分子很快复性,离心时染色体DNA与细胞碎片一起被沉淀出来,而质粒DNA则留在上清液中。
影响质粒DNA提取的因素有哪些
碱裂解法:
溶液I的作用
首先要控制好Tris-HCl溶液的pH和浓度;50 mM葡萄糖使悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖实对质粒的抽提本身而言,几乎没有任何影响。在溶液I中加入高达 10 mM 的EDTA,是要把大肠杆菌细胞中的Ca2+和Mg2+等所有二价金属离子都螯合掉,抑制DNase的活性,和抑制微生物生长。如果不加EDTA,也没太大影响,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。注意:菌体一定要悬浮均匀,不能有结块。
溶液II
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。因为破碎细胞主要是碱的作用,而不是SDS,所以才叫碱法抽提。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒;加SDS是为下一步操作做铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
溶液III
溶液III加入后就会有大量的沉淀,因为十二烷基硫酸钠(sodium dodecylsulfate,SDS)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate,PDS),而PDS是水不溶的,因此发生了沉淀。溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。而SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,同时大肠杆菌的基因组DNA也一起被共沉淀了。因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。
2 M的醋酸是为了中和NaOH,因为长时间的碱性条件会打断DNA。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。
25/24/1的酚/氯仿/异戊醇
PDS沉淀的形成并不能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。
用25/24/1的酚/氯仿/异戊醇的原因:酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。
2倍体积的乙醇
回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收。高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。得到的质粒样品一般用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。
琼脂糖电泳鉴定质粒
琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb的大肠杆菌基因组DNA的片断。非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。
这个要看是用试剂盒提还是手提。
试剂盒提取的话就很方便很好操作,试剂、吸附柱什么都是商品级的,问题都不大,主要是看你培养的菌质量如何,如果培养菌是挑取的是假阳性或者是培养基抗性出问题,就会因为质粒没有或者量过少而检测不出来,其次的话就是Buffer要加的是无水乙醇,不能加错,其他操作按说明书就没有问题。
手提的话需要质粒提取因素就很多了,这里有总结的很好的你可以看一下:
1、手提中主要是试剂对质粒DNA提取的影响较大,其中溶液Ⅰ,加入的葡萄糖可以使悬浮后的大肠杆菌不会快速沉积到管子底部。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,可以抑制DNase的活性和微生物生长。此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率。
2、溶液II中,NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱后几乎在瞬间就会溶解,这是由于细胞膜发生了从bilaye(双层膜)结构向micelle(微囊)结构的相变化所导致。SDS也呈碱性,但如果只用SDS,达不到彻底溶解细胞的作用,加入SDS主要为下一步做铺垫。这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
3、对于溶液Ⅲ,SDS在高盐浓度下发生沉淀,同时SDS能与蛋白质结合,平均两个氨基酸上结合一个SDS分子,所以沉淀也将溶液中的大部分蛋白质沉淀下来。溶液中的K+置换了SDS中的Na+而形成了不溶性的PDS,高浓度的盐使沉淀更完全。同时,由于基因组DNA很长,容易被PDS共沉淀。2M的醋酸可以中和NaOH,因为长时间的碱性条件会打断DNA。基因组DNA一旦发生断裂,小于100kb的片断,就不容易与PDS共沉淀。所以碱处理的时间要短,而且不得激烈振荡,否则最后得到的质粒上会有大量的基因组DNA污染。这一步操作混合均匀后在冰上放置,可以使PDS沉淀更充分。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!