统计上的显著性和实际上的显著性的有什么区别
统计上的显著性是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。
两者的区别有:适用情况不同、计算方式不同、P值不同。
1、适用情况不同:渐进显著性适用于样本数量较多的情况,精确显著性适用于样本数量较少的情况。
2、计算方式不同:渐进显著性根据渐近正态分布理论计算,精确显著性根据精确的分布计算。
3、P值不同:渐进显著性的P值是双侧的,即检验结果不显著的范围被分布在检验统计量的两个尾端;精确显著性可以根据双侧显著性的P值计算得出,P值是双侧显著性的两倍。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!