主成分分析用相关系数矩阵和协方差矩阵有什么区别?
在统计学与概率论中,相关矩阵与协方差矩阵,互相关矩阵与互协方差矩阵可以通过计算随机向量(自相关或自协方差时为x,互相关或互协方差时为x,y)其第 i 个与第 j 个随机向量(即随机变量构成的向量)之间的自、互相关系数以及自、互协方差来计算。这是从标量随机变量到高维度随机向量的自然推广。
相关矩阵:也叫相关系数矩阵,其是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第i行第j列的元素是原矩阵第i列和第j列的相关系数。
协方差矩阵:在统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差,是从标量随机变量到高维度随机向量的自然推广。
相关系数矩阵和协方差矩阵主要用于描述矩阵各行,列向量之间的相关程度。
随机变量:ξ
0,数学期望:Eξ
1,方差:若E(ξ-Eξ)^2存在,则称 Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差.
2,协方差:给定二维随机变量 ξ (ξ1, ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量
(ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)]
3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5
=E[(ξ1-Eξ1)(ξ2-Eξ2)] / [Dξ1Dξ2]^0.5 (Dξ1,Dξ2均大于零)
称:上式为ξ1,ξ2的‘相关系数’或‘标准协方差’.
4,以上可知方差、协方差、相关系数之间的相互关系.
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!