百科狗-知识改变命运!
--

向量空间维数和向量的维数的区别

一语惊醒梦中人1年前 (2023-12-04)阅读数 10#综合百科
文章标签矩阵名词

向量的维数和矩阵的维数和空间的维数的区别有矩阵的维数和矩阵的秩两者范围不同,矩阵的维数和矩阵的秩两者用途不同,矩阵的维数和矩阵的秩两者对应关系不同。

1、矩阵的维数和矩阵的秩两者范围不同:维度,是数学中独立参数的数目;而秩表示的是其生成的子空间的维度。如果还考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目。

2、矩阵的维数和矩阵的秩两者用途不同:“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值)。

在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。

而矩阵的秩的一个有用应用是计算线性方程组解的数目。

向量空间维数和向量的维数的区别

3、矩阵的维数和矩阵的秩两者对应关系不同:矩阵的维数没有固定的对应关系。

而对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度。矩阵 A称为 fA的变换矩阵。

扩展资料:

矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,

而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。

1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。

1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。

百度百科-维度

百度百科- 秩(线性代数术语)

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)