邻域和聚点的意义是什么,如何理解,能用在哪里?
邻域的意思也就是一个极限区间,它以一个很小的区间(a-b,a+b)表示为点a的邻域,有些概念定义的使用范围只能在这个区间内才能成立。
b你可以看做是个无穷小,我们在求一个点的极限或者是一个函数在某个点是否连续时候,用的都是临域,从而考察这个点a的左极限和右极限。但实际解题过程中,不用那么繁琐的去考察他的临域,而是在条件成熟时直接带入了这个点a。
在拓扑学、数学分析和复分析中都有聚点的概念。在拓扑学中设拓扑空间(X,τ),A?X,x∈X。若x的每个邻域都含有A \ {x}中的点,则称x为A的聚点。
在数学分析中坐标平面上具有某种性质的点的集合,称为平面点集。给定点集E ,对于任意给定的δ〉0 ,点P 的δ去心邻域内,总有E 中点,则称为P 是 E的聚点(或叫作极限点)。
聚点可以是E中的点,也可以不属于E。此聚点要么是内点,要么是边界点。内点是聚点,界点是聚点,孤立点不是聚点。对于有限点集是不存在聚点的。聚点必须相对给定的集合而言,离开了点集E,聚点就没有意义。
在复分析中点集E,若在复平面上的一点z的任意邻域都有E的无穷多个点,则称z为E的聚点。
以聚点为圆心,任意大的半径大ε>0画一圆,总有无穷多个点汇聚在该圆内。若聚点是唯一的,则聚点就是极限点。
扩展资料:
邻域公理是现代数学拓扑结构的基础概念,是定义拓扑的五套等价公理之一。这套公理直接定义了空间上的整套领域系,而非简单定义某个点的邻域。映射U即是将x映射至x邻域组成的集合。
U1:若A是x的邻域,则x属于A。这是显然的。
U2:若A和B都是x的邻域,则A和B的交集也是x的邻域。即邻域对于有限交运算封闭。
U3:若A是x的邻域,则所有包含A的集合都是x的邻域。
U4:若A是x的邻域,则存在一个被A包含的集合B(可以相等),使得B是其中所有点的邻域。换言之,若x有一个邻域,那么一定可以将其缩小,缩小到它是其中所有点的邻域。更关键的,这样的邻域当且仅当它是X中的开集,这也是邻域公理为何等价于开集公理,从而可以通过它定义X上拓扑的原因。
开邻域和闭邻域
若x的邻域同时是X中的开集,称其为x的开邻域;若它同时是X中的闭集则称其为x的闭邻域。
结论
1 拓扑空间X,X的子集A是开集,当且仅当A是其中所有点的邻域。(显然由此可知,从邻域公理出发可以等价地定义拓扑空间)。
2 拓扑空间X,X的子集A和A°,A°是A的开核,当且仅当A° = {x | ?U∈U(x),U?A}。
3 拓扑空间X,X的子集A和A’,A’是A的闭包,当且仅当A’ = {x | ?U∈U(x),U∩A ≠ ?}
定义
任给,存在无穷多个满足?为复数序列的一个聚点。
聚点与极限
有的序列可以有多个聚点。例如,实数序列
就有两个聚点1和-1.当序列的极限存在时,序列的极限是此序列的唯一聚点。
在实数序列中,数值最大的聚点称为的上极限,记作
数值最小的聚点称为的下极限,记作
对于上述序列上极限与下极限的概念在计算级数收敛半径时常会用到。
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素 ?。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y?S ?。
集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
参考资料:
其实这个只要了解定义就可以轻松证明了。 ? ?
设E为任意点集,E1为E的闭包,E2为E的内核(即E的内点全体),用E3表示E的边界点,则E3={x|x∈E1,x不属于E2}(这一定义可在任一集合论著作中见到),因此E3=E1-E2。因为E1为闭集(E1包含E的所有聚点),E2为开集(E2中只有E的内点),所以E3=E1-E2为闭集。
集合论是数学的一个基本的分支学科,研究对象是一般集合:
集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域,包含了集合、元素和成员关系等最基本的数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言,集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!