百科狗-知识改变命运!
--

简述Ig的功能区与其功能

桃子12个月前 (12-05)阅读数 5#综合百科
文章标签基因片段

免疫球蛋白(Ig):指具有抗体活性或化学结构与抗体相似的球蛋白。这类球蛋白过去也称为γ球蛋白,主要存在于血液和其他分泌液中,也可作为抗原识别受体存在于B细胞膜上。 免疫球蛋白的功能区:Ig分子的多肽链因链内二硫键连接而将肽链折叠成几个球形结构,并与相应功能有关,故称为免疫球蛋白的功能区。每条L链有二个功能区:可变区(VL区)和稳定区(CL区)。IgG、IgA和IgD的每条H链有四个功能区:一个可变区(VH区)和三个稳定区(CH1、2、3区)。IgM和IgE多一个恒定区CH4。免疫球蛋白的酶解片段:免疫球蛋白用木瓜蛋白酶水解,可将其从铰链区二硫键的N端部位切断,得到三个片段:二个相同的可与抗原结合的片段称为Fab 片段;一个可结晶的片段称为Fc片段。用胃蛋白酶水解,可从铰链区二硫键的近C端部位切断免疫球蛋白,得到一个大分子的双体Fab 片段称为F(ab’)2 ;以及数个小分子无生物学活性的Fc碎片称为 pFc’片段。  免疫球蛋白的血清型:免疫球蛋白本身具有免疫原性,每个免疫球蛋白分子上带有多种抗原决定簇,用于免疫异种动物、同种异体动物或自身均可引起免疫应答,产生相应抗体,并用血清学方法检测,故称为免疫球蛋白的血清型。免疫球蛋白主要有三种血清型:同种型、同种异型和独特型。Ig同种型:指同一物种所有个体Ig分子所共有的抗原特异性。同种型抗原决定簇存在于Ig的恒定区。根据重链同种型抗原特异性的不同将Ig分为五类。根据轻链同种型抗原的不同可将轻链分为两型。  Ig同种异型:指同一物种不同个体之间的同类Ig分子所具有的不同抗原特异性。同种异型抗原决定簇由重链或轻链恒定区的一个或数个氨基酸决定,因其具有个体特异性,因此可作为遗传标记。  Ig的独特型(Id):指同一个体内不同B细胞克隆所产生的免疫球蛋白分子V区所具有的抗原特异性。独特型抗原决定簇由Ig超变区特有的氨基酸序列和构型决定。独特型抗体刺激异种、同种异体甚至自身均可产生相应抗体,即抗独特型抗体(AId)。由独特型抗体和抗独特型抗体组成的网络(Id-AId网络)在免疫应答的调节中具有重要作用。(一)基本结构:由二条相同的重链和轻链构成的对称四肽链(链接:图1免疫球蛋白)。X射线晶体结构分析发现,IgG分子由三个相同大小的节段组成,位于上端(N端)的两个臂,各含一条轻链和一条重链的1/2,由易弯曲的铰链区连接到主干上(两条重链的各1/2),形成一个“Y”形分子,称为Ig分子的单体,是构成Ig分子的基本单位。在二条H链间、H链和L链间、以及四条肽链内部都有二硫键相连,形成多个球形结构,构成不同的功能区。(二) Ig功能区:  1.L链功能区:VL、CL。  2.H链功能区:VH、CH1、CH2、CH3、CH4(IgM、IgE)。  3.铰链区:位于CH1与CH2之间的特殊部分。特点:富含脯氨酸,有弹性, 能伸展、折叠、转动。  4.功能区数目:轻链2个;IgG、IgA、IgD重链各4个;IgM、IgE重链各5个。  (三)各功能区的主要功能:  1.VL、VH:特异性结合抗原。独特型抗原决定簇所在。  2.CH1:Ig遗传标记所在。  3.IgG的CH2、IgM的CH3:结合补体C1q,经典途径激活补体。  4.IgG的CH3、IgE的CH4:亲细胞活性。  (1)IgG 通过CH3(Fc段)可与巨噬细胞、NK细胞和嗜中性粒细胞表面的Fcγ受体结合,促进这些细胞对靶细胞的吞噬和杀伤,该作用称为抗体的调理作用和ADCC效应。  (2)IgE通过CH4(Fc段)可与肥大细胞和嗜碱性粒细胞表面的Fcε受体结合,促进这些细胞脱颗粒,释放一系列生物活性物质,介导I型超敏反应。  Ig各功能区的名称和功能:免疫球蛋白位置及名称功能轻链重链可变区(Fab):超变区骨架区VL(近N端1/2)VH( 近N端1/4)结合特异性抗原独特型决定簇稳定区(Fc)CL(近C端1/2)CH(近C端3/4)同种异型遗传标志同种型CH1CH2IgG、IgA、IgD、 IgM、CH3IgECH4-IgM、IgE结合补体(IgG CH2、IgM CH3)通过胎盘(IgG CH3)穿过粘膜(IgA)调理作用(IgG、IgA、IgM)ADCC效应(IgG)介导I型超敏反应(IgE CH4)铰链区CH1~CH2(IgG、IgA)CH2~CH3(IgM、IgE)利于抗体分子变构:更好地结合抗原、暴露补体结合位点。J链位于IgM和IgA的重链Fc端连接IgM 和IgA的单体,使之分别成为五聚体和双体。分泌片位于SIgA的重链保护SIgA不受蛋白酶的破坏 (五)Ig的类别、型别和血清型:  1.类别:重链根据稳定区(CH)抗原性不同分成五类: μ、γ、α、δ和ε,相应的抗体分别为IgM、IgG、IgA、IgD和IgE。  2.亚类:根据CH氨基酸组成和H链间二硫键数目的差异,IgG可分为IgG1、IgG2、IgG3、IgG4 四个亚类;IgA和IgM也可分二个亚类:IgA1、IgA 2和IgM1、IgM2。  3.型别:轻链根据稳定区(CL)抗原性不同分成两型:κ型和λ型。  4.亚型:λ型轻链根据稳定区个别氨基酸的不同分为四个亚型:λ1~λ4。  5.血清型:包括同种型、同种异型、独特型。 人各类免疫球蛋白的特性和功能:IgGIgMIgA血清型、分泌型(S IgA)IgDIgE重链类型γμαδε主要存在形式单体五聚体单体、双体单体单体分子量(kD)150970,最大160184188开始合成时间生后3个月胚胎晚期(最早)生后4~6个月晚较晚成人血清含量(mg/ml)9最高1.530.035×10—5最低占血清Ig总量(% )751010~15<1<0.001血清中半衰期(天)21(最长)10632经典途径活化补体++++++(最强)---替代途径活化补体+IgG4-+--通过胎盘+(唯一)----结合吞噬细胞+++-+-+(嗜酸性粒细胞)结合肥大细胞和嗜碱性粒细胞+IgG4---+++结合SPA+(唯一)----介导ADCC++----免疫作用抗菌、抗病毒、抗毒素、自身抗体。早期抗感染、溶菌、溶血(天然血型抗体)、类风湿因子,mIgM为B细胞表面抗原识别受体。粘膜局部抗感染。SIgA可通过母乳传递给婴儿。mIgD为成熟B细胞表面抗原识别受体,是B细胞分化成熟标志。参与I型超敏反应,抗寄生虫感染。

IgM为五聚体,是Ig中分子最大者。分子结构呈环形,含一个J链,各单位通过μ链倒数第二位的二硫键与J链互相连接。μ链含有5个同源区,其CH3和CH4相当于IgG的CH2和CH3,无铰链区。

从化学结构上看,IgM结合抗原的能力可达10价,但实际上常为5价,这可能是因立体空间位阻效应所致。当IgM分子与大颗粒抗原反应时,5个单体协同作用,效应明显增大。IgM凝集抗原的能力比IgM大得多,激活补体的能力超过IgG1000倍;由于吞噬细胞缺乏IgM的特异受体,因而IgM没有独立的吞噬调理作用;但当补体存在时,它能通过C3b与巨噬细胞结合以促进吞噬。虽然IgM单个分子的杀菌和调理作用均明显高于IgG抗体,但因其血内含量低、半衰期短、出现早、消失快、组织穿透力弱,故其保护作用实际上常不如IgG。

血型同种凝集素和冷凝集素的抗体类型是IgM,不能通过胎盘,新生儿脐血中若IgM增高,提示有宫内感染存在。在感染或疫苗接种以后,最先出现的抗体是IgM;在抗原的反复刺激下,可通过Ig基因的类转换而转向IgG合成。当分泌物中IgA缺陷时,IgM也和IgA一样可结合分泌片而替代IgA。IgM也是B细胞中的主要表面膜Ig,作为抗原受体而引发抗体应答。

(三)IgA

IgA分为血清型和分泌型两种类型。

大部分血清IgA为单体,大约10%~15%为双聚体,也发现少量多聚体。IgA功能区的分布与IgG十分相似,两个亚类(IgA1和IgA2)的最大差异在铰链区。IgA2缺少H-L链间二硫键区域,容易被解离分开。从含量、稳定性和半衰期看,血清型IgA虽不如IgG,但高于其他类Ig。IgA可以结合抗原,但不能激活补体的经典途径,因此不能象IgG那样发挥许多的生物效应,所以过去曾误以为血清型IgA的意义不大;近年的研究发现,循环免疫复合的抗体中有相当比例的IgA,因而认为:血清型IgA以无炎症形式清除大量的抗原,这是对维持机体内环境稳定的非常有益的免疫效应。

分泌型IgA(SigA)为双聚体,沉降系数11S,分子量400kD。每一SigA分子含一个J链和一个分泌片(图2-4)。α链、L链和J链均由浆细胞产生,而分泌片由上皮细胞合成。J链通过倒数第二位二硫键将2个IgA单体互相连接;结合分泌片后SIgA的结构更为紧密而不被酶解,有助于SIgA在粘在粘膜表面及外分泌液中保持抗体活性。外分泌液中的高浓度IgA主要为局部合成,特别是在肠相关淋巴样组织(GALT)内。

分泌型IgA性能稳定,在局部浓度大,能抑制病原体和有害抗原粘附在粘膜上,阻挡其进入体内;同时也因其调理吞噬和溶解作用,构成了粘膜第一线防御机制;母乳中的分泌型IgA提供了婴儿出生后4~6月内的局部免疫屏障;因此常称分泌型IgA为局部抗体。有关SIgA的免疫作用参见第七章。

(四)IgD

IgD的分子结构与IgG非常相似,有明显的铰链区,其蛋白质高度糖基化。IgD性能不稳定,在分离过程中易于聚合,又极易被酶裂解。虽然有些免疫应答可能与特异性IgD抗体有关,但它并不能激活任何效应系统。某些自身免疫病及过敏反应病患者血中存在IgD类抗核抗体或抗青霉素IgD抗体。正常人血清内IgD浓度很低,但在血循环内B细胞膜表层可检出IgD,其功能主要是作为B细胞表面的抗原受体。在B细胞发育的某些阶段,膜IgD的合成增强。大部分慢性淋巴细胞白血病病人B细胞表面带膜IgD,并常同时有膜IgM。

(五)IgE

IgE为单体结构,分子量大于IgG和单体IgA,含糖量较高,ε链有6个低聚糖侧链。象IgM一样,IgE也有5个同源区,CH2功能区置换了其他类重链的铰链区。正常人血清中IgE水平在5类Ig中最低,分布于呼吸道和肠道粘膜上的IgE稍多,可能与IgE在粘膜下淋巴组织内局部合成有关。IgE水平与个体遗传性和抗原质量密切相关,因而其血清含量在人群中波动很大,在特应性过敏症和寄生虫感染者血清中IgE水平可升高。IgE不能激活补体及穿过胎盘,但它的Fc段能与肥大细胞和嗜碱性粒细胞表面的受体结合,介导Ⅰ型变态反应的发生,因此又称亲细胞抗体。

免疫球蛋白的基因及抗体形成 回目录

免疫球蛋白反应的特异性和分子的多样性是受基因支配;一条肽链的C区和V区分别由C基因和V基因编码。任何一个B细胞都有3个独立的Ig基因簇:1个H链基因簇和2个L链基因簇(κ和λ),构成Ig的结构基因;在B细胞分化成熟过程中进行基因重排,进而转录与翻译,形成抗体。

(一)Ig基因的结构

1.重链基因人类重链基因位于第14号染色体上,基因结构非常复杂,分为4个不连续的基因节段,从着丝点5'末端起依次为:可变区(VH)基因、多样性区(diversityregion,DH)基因、接合区(JH)基因和稳定区(CH)基因。

V区基因分成6个亚群,在2500kD的区域内排列有100~200个基因。某些大亚群如VHⅢ含有约25~30个基因,而某些小亚群如VHⅤ或VHⅥ仅含一个或几个基因。每个V基因由一个大的外显子和一个位于前导顺序后的内含子(约100~150bp)组成,前导顺序编码一种疏水肽,指引Ig肽链的转膜作用,V基因3末端是重组酶信号。在VH座内还有一些不具表达功能的假基因。

C基因结构约200kb,含有11个基因。第一个CH为Cμ,以后依次为:Cδ、Cγ3、Cγ1、φε1、Cα1、φγ、Cγ2、Cγ4、Cε、Cα2。其中φε1(φε2不在第14号染色体上)和φγ是两个假基因。除Cδ基因外,其他CH基因上游都有一个转换(S)顺序,负责H链的类转换。临床正常个体的CH座位内可有大片缺失,这种无免疫缺陷症状的个体可能是通过细胞选择在免疫应答中补偿这种基因缺失。

每个CH基因的外显子分别编码相应H链的功能区,由内含子将其隔开。如Cμ基因有4个外显子各自编码链C区上的Cμ1、Cμ2、Cμ3和Cμ4四个功能区。除上述主要的CH基因外,还有其他编码不同形式Ig分子的基因,例如分别编码分泌IgM和膜IgM的μs和μm基因;前者是Cμ45'端的外加部分,编码μs链C端20个氨基酸;后者位于Cμ基因下游,含2个外显子,共同编码μm链C端41个氨基酸。

V和C基因被中间的另两个基因节段分开,即D基因和J基因。J区有6个功能基因和3个假基因;D区的基因数目尚未确定,但至少不下20个。D和J基因参与重链V区的编码,负责其羧基端的一段氨基酸顺序。

2.轻链基因轻链的基因比重链的基因结构简单,仅有V区和J区而无D基因节段。κ链和λ链的基因互不相同。

人类κ链基因位于第2号染色体上。Cκ基因只有一个,邻近上游的J区座位内有5个Jκ基因,Vκ基因节段大约有80个Vκ基因,约一半以上可能是假基因。

λ链基因位于第22号染色体上。Cλ基因簇比Cκ基因复杂得多,至少有6个非等位基因,其中2个为假基因;每个功能Cλ基因前均有一个(或更多)相关的Jκ基因;对Vλ基因库目前所知甚少,其基因数目尚不清楚。

轻链的J基因参与V区肽链的编码,大约负责十几个氨基酸的顺序。

(二)Ig基因的重排

胚系状态的Ig基因,无论是重链基因还是轻链基因,都不能作为一个独立的单位进行表达,只有经过重排以后才能成为具有表达功能的基因。在成熟Ig基因的产生过程中,Ig基因的重排需遵循一定的顺序,先由V-J连接或V-D-J连接,然后由VJ或VDJ与C区基因连接。在重链,还可以发生类转换。

1.V-J或V-D-J连接轻链的V-J连接和重链的V-J-D连接都是在DNA水平发生,均由重组酶介导。V-J或V-D-J的组合都是随机的;重组后的V-J编码轻链的V区,V-D-J编码重链的V区。

V-J基因重排是通过V区3'端和J区5'端旁的特殊顺序使V-J靠扰并提供酶切信息,实现V基因和J基因结合成为V-J基因单位。这种V-J重排是随机性的。V基因节段中任何一个V基因可与任何一个J基因重排结合。被结合的J基因上游的J基因丢失,下游的J基因保留。

V-D-J重排中,除V3'端和J5'端旁侧外,D两侧亦有上述特殊识别顺序在起作用。V-D-J连接中往往是DJ结合先于VD结合。与V-J连接一样,V-D-J重排也具有不精确性。还有严重排为功能性连接的VH被其中游胚系状态(未重排)的VH所替换。这可能是扩大基因容量和保证胚系状态的VH基因能全部利用的一种机制。

在B细胞成熟过程中,Ig基因存在重排的等级(hierarchy)现象。在多能造血干细胞分化发育成为幼稚B细胞(又称前B细胞)时,就发生V-D-J重排,开始表达H链,邻近J基因的Cμ自然随之表达,这是顺序优先的结果。由于Cμ基因和Cδ基因间的距离很短,两者可以同时得以转录;V-D-J在RNA水平既可与C结合,也可与Cδ结合,使IgM和IgD在单个B细胞上协同表达,而并非缺失性类转换。以后κ基因开始Vκ和Jκ重排,产生κ链。

2.重链类转换类转换是在DNA水平上V-D-J与CH基因连接由Cμ和Cδ转换成其他CH基因的过程,是其他CH基因上游的S顺序间发生重组的结果。S-S重组导致重组S顺序间的所有DNA基因丢失,例如Sμ与Sγ1间发生转换,则Cμ、Cδ和Cγ3基因及其侧面的顺序均一起丢失,使V-D-J连接由一个CH重新定位于另一个CH。类转换只变换Ig的类别,不改变抗体的特异性。

(三)Ig基因的表达及Ig分子的分泌

Ig的合成过程与一般蛋白质合成相似。在细胞内有表达功能的V-J或V-D-J基因单位重组完成后,与C基因簇一起被转录成初级RNA,经过加工剪接,去除内含子,生成mRNA,最后分别翻译成各种肽链,装配成Ig分子,分泌出体外。

Ig基因在表达时存在等位排斥(allelicexclusion)和同型排斥(isotypicexclusion)现象,可能是V-D-J连接或V-J连接的不精确性所造成的结果,以致许多重排无转录产物。一个B细胞不会同时表达κ链和λ链,称同型排斥。κ基因重排总发生在λ基因重排之前,当Vκ-Jκ重排形成有表达功能的基因后,λ基因重排即被抑制;在λ链产生细胞内,常有κ基因缺失。象其他的基因一样,Ig基因的表达过程中也有启动子与增强子来启动和调节基因的转录。

B细胞在接受抗原刺激后迅速分化增殖,除一部分分化记忆细胞外,其余分化为浆细胞。浆细胞在内质网和多聚糖体均显著增加,大量合成Ig分子。合成L与H链的粗面内质网多聚核糖体是不同的。L链在190~200S的多聚核糖体(含4~5个核糖体)上合成,H链在270~300S的多聚核糖体(含11~18个核糖体)上合成。作为一条完整的多肽链,它们从一个起始点(N端)开始(向C端)依次合成。游离的L和H链少数在多聚核糖体上就有非共价结合或共价结合,大部分转移至内质网的贮池中,并装配成完整的Ig分子,然后依赖N端疏水性前导顺序进入高尔基复合体,再分泌至细胞外。在此移动过程中糖残基通过结合在膜上的糖转化酶按一定顺序逐步加到Ig分子上。

(四)抗体分子的多样性

一个机体何以能产生多达106~108种具有不同抗体特异性的Ig分子,其机制至今虽未完全清楚,但从基因的结构组成及重排中可找到一些答案。众多V区基因和一个或少数几个C区基因不连续地排列在染色体上,它们在DNA水平随机地结合是Ig分子多样性的基础,而体细胞突变又可增大V区的库容。

简述Ig的功能区与其功能

多样性程度可以通过Ig基因在染色体内重组时V-J与V-D-J的乘积来计算:当100个Vκ和5个Jκ重组时所产生的多样性至少是100×5=5×102个;V-D-J重排时100个VH与10个DH和6个JH连接所的生的多样性至少有100×10×6=6×103。同时连接这些基因时还会发生不精确性而使多样性增加,因而由κ链和H链组成的抗体分子的多样性最少有5×102×6×103=3×106之多。另外,在V-J、V-D-J连接过程中发生的碱基缺失和插入又扩大了多样性的程度。

免疫球蛋白基因的结构和多样性 回目录

免疫球蛋白(Ig)的分子由IGK、IGL和IGH基因编码。IGK、IGL和IGH基因定位于不同的染色体。编码一条Ig多肽链的基因是由胚系中数个分隔开的DNA片段(基因片段)经重排而形成。1965年Dreyer和Bennet首先提出假说,认为Ig的V区和C区由分隔存在的基因所编码,在淋巴细胞发育过程中这两个基因发生易位而重排在一起。1976年Hozumi和Tonegawa应用DNA重组技术证实了这一假说。

Ig重链基因的结构和重排

Ig重链基因是由V、D、J和C四种不同基因片段所组成。

(一)Ig重链可变区(V区)基因

重链可变区基因是由V、D、J三种基因片段经重排后所形成。

1.重链V区基因的组成 编码重链V区基因长约1000~2000kb,包括V、D、J三组基因片段。

(1)重链V基因片段:小鼠VH基因片段数目为250~1000个。根据VH基因片段核酸序列的相似性(>80%同源性),至少可分为11个家族(family).人V基因片段约为100个,至少可分为6个家族,每个家族含有2~60个成员不等。V基因片段由2个编码区(coding regions)组成:第一个编码区编码大部分信号序列;第二个编码区编码信号序列羧基端侧的4个氨基酸残基和可变区约98个氨基酸残基,包括互补决定区1和2(complementarity determining region 1和2,CDR1和CDR2)。

(2)重链D基因片段:D(diversity)是指多样性。DH基因片段仅存在于重链基因中而不存在于轻链基因。D基因片段编码重链V区大部分CDR3。小鼠DH共有12个片段,位于VH和JH基因片段之间,大部分DH片段较为集中,约占60~80kb,但靠上游的DH可能位于VH区域内,最后一个DH片段与JH基因5'端相距约0.7kb。人类DH片段可能有10~20个左右。

(3)重链的J基因片段:J(joining)指连接,是连接V和C基因片段。JH编码约15~17个氨基酸残基,包括重链V区CDR3除DH编码外的其余部分和第4骨架区。小鼠JH基因片段有4个,与Cμ相距约6.5kb。人有9个JH,其中6个是有功能的JH基因片段。

V、D、J基因片段经重组连接在一起,组成2个外显子,一个外显子编码信号序列的大部分,另一个外显子编码信号序列的其余部分和重链可变区。

2.重链可变区基因的移位 在重链基因重排开始时,二条染色体上都发生D基因片段移位到J基因片段而发生D-J基因连接。在此以后,只有其中一条染色体上的V基因片段与D-J基因片段连接。VH基因片段5'端含有启动子(promoter),JH和Cμ基因片段之间的内含子中含有转录增强子(transcriptinal enhancer)。如果一条染色体VH基因与D-J基因重排无效(non-productive),另一条染色体的VH基因片段开始发生移位,与D-J基因片段连接。

某些与Ig基因片段重排有关的特殊序列称为识别序列(recognition sequences),位于V基因片段的3'端与J基因片段的5'端之间以及D基因片段的两侧。V基因片段3'端、J基因片段5'端以及D基因片段的两侧也是DNA重排识别信号所在区域,这些识别信号包括三部分:(1)高度保守的回文结构的七聚体(palindromic heptamer);(2)较少保守、富含A/T的九聚体(nonamer);(3)七聚体和九聚体之间不保守的间隔序列(spacer sequence),含有12±1碱基对或23±1碱基对。根据12/23碱基对间隔规则(或称1圈/2圈定律),两个基因片段的重组仅发生在两个基因片段之间:各有一个12个碱基对片段和一个23个碱基对片段的结构。

参与V/(D)/J基因重组过程的酶称为V/(D)/J重组酶(recombinase),有关于执行识别、切割和重新连接基因片段重组酶的纯化和鉴定工作还刚开始。重组酶实际上包括重组过程中多种酶的活性。最近在前B细胞(pre-b cell)中已经鉴定出两种刺激Ig基因重排的基因,称为重组激活基因1(recombination activating gene 1,RAG-1)和重组激活基因2(RAG-2),其确切的作用机理还不太清楚。重组酶作用的特点是:(1)淋巴细胞特异性的,非淋巴样细胞如成纤维细胞无重组酶活性,这可能解释了Ig基因的重排仅见于B淋巴细胞。目前一般认为T细胞TCR基因重排中的重组酶与B细胞中重组酶相同或相似。(2)重组酶发挥其功能仅限于B细胞发育早期,未成熟B细胞如前B细胞(pre-b cell)细胞系重组酶活性很高,但抗体生成细胞或骨髓瘤细胞无明显重组酶活性,因此时B细胞已经分泌某一特异性抗体,不再发生重排其它的Ig基因,因此也不会改变原先所产生抗体的特异性。转换重组酶(switch recom-binase)可能与VDJ重组酶(VDJ recombinase)相似,但缺乏七聚体/九聚体(heptamer/nonamer)识别蛋白。重组酶功能异常可导致机体不能产生Ig和TCR,很可能与重症联合免疫缺陷(severe combined immunodeficiency,SCID)的发生有关。例如SCID小鼠16号染色体着丝点末端存在一个scid基因,为单基因常染色体遗传基因。scid基因纯合将影响DNA重组酶的识别功能,在TCR或BCR基因片段重排时不能识别正确的位点,使T细胞、B细胞在淋巴干细胞发育早期即夭折,导致重症联合免疫缺陷。

(二)Ig重链恒定区(C区)基因

1.重链C基因片段 重链恒定区基因由多个外显子组成,位于J基因片段的下游,至少相隔1.3kb。每1个外显子编码1个结构域(domain),铰链区(hinge region)是由单独的外显子所编码,但α重链的铰链区是由CH2外显子的5'端所编码。大多分泌的Ig重链羧基端片段或称尾端“tail piece”是由最后一个CH外显子的3'端所编码,而δ链的“tail piece”是由一个单独的外显子所编码。小鼠CH基因约占2000kb,其外显子从5'端到3'排列的顺序是Cμ-Cδ-Cγ3-Cγ1-Cγ2b-Cγ2a-Cε-Cα。人CH基因外显子排列的顺序是Cμ-Cδ-Cγ3-Cγ1-Cε2(pseudo基因)Cα1-Cγ2-Cγ4-Cε1-Cα2。其中基因片段Cγ3-Cγ1-Cε2-Cα1和基因片段Cγ2-Cγ4-Cε1-Cα2可能是一个片段经过一次复制而得,为研究CH基因的起源和进化提供有用的依据。

2.免疫球蛋白类型转换 1964年Nossal等发现B淋巴细胞存在着类型的转换。Ig类型转换(class switch)或称同种型转换(isotype switch)是指一个B淋巴细胞克隆在分化过程中VH基因片段保持不变,而发生CH基因节段的重排、比较CH基因片段重排后基因编码的产物,V区相同而C区不同,即识别抗原特异性不变,而类或亚类发生改变。这种类型转换在无明显诱因下可自发产生。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)