百科狗-知识改变命运!
--

碳同化的光呼吸

乐乐1年前 (2023-12-05)阅读数 8#综合百科
文章标签植物呼吸

植物的绿色细胞在光下吸收氧气,放出二氧化碳的过程称为光呼吸(photorespiration)。这种呼吸仅在光下发生,且与光合作用密切相关。一般生活细胞的呼吸在光照和黑暗中都可以进行,对光照没有特殊要求,称为暗呼吸。

光呼吸与暗呼吸在呼吸底物、代谢途径以及对O2和CO2浓度的反应等方面均不相同。另外,光呼吸速率比暗呼吸速率高3~5倍。 光呼吸是一个氧化过程,被氧化的底物是乙醇酸(glycolate)。乙醇酸的产生则以RuBP为底物,催化这一反应的酶是Rubisco。这种酶是一种兼性酶,具有催化羧化反应和加氧反应两种功能。其催化方向取决于CO2和O2的分压。当CO2分压高而O2分压低时,RuBP与CO2经此酶催化生成2分子的PGA;反之,则RuBP与O2在此酶催化下生成1分子PGA和1分子磷酸乙醇酸(C2化合物),后者在磷酸乙醇酸磷酸(酯)酶的作用下变成乙醇酸。

表1 光呼吸与暗呼吸的区别

光呼吸

暗呼吸

底物

在光下由Rubisco加氧反应形成的乙醇酸,底物是新形成的。

可以是碳水化合物,脂肪或蛋白质,但最常见的底物是葡萄糖。底物可以是新形成的,也可以是贮存物。

代谢途径

乙醇酸代谢途径,或称C2途径

糖酵解,三羧酸循环,磷酸戊糖途径

发生部位

只发生在光合细胞里,在叶绿体、过氧化体和线粒体三种细胞器协同作用下进行。

在所有活细胞的细胞质和线粒体中进行。

对O2 和CO2浓度的反应

在O2浓度1-100%范围内,光呼吸随氧浓度提高而增强,高浓度的CO2抑制光呼吸。

一般而言,O2和CO2浓度对暗呼吸无明显影响。

反应部位、条件

光下、绿色细胞

光、暗处生活细胞

光呼吸的全过程需要由叶绿体、过氧化体和线粒体三种细胞器协同完成,这是一个环式变化过程。光呼吸实际上是乙醇酸代谢途径,由于乙醇酸是C2化合物,因此光呼吸途径又称C2循环。

在叶绿体中形成的乙醇酸转至过氧化体,由乙醇酸氧化酶催化,被氧化成乙醛酸和H2O2,后者由过氧化氢酶催化分解成H2O和O2。乙醛酸经转氨酶作用变成甘氨酸,进入线粒体。2分子甘氨酸在线粒体中发生氧化脱羧和羟甲基转移反应转变为1分子丝氨酸,并产生NADH、NH3,放出CO2。丝氨酸转回到过氧化体,并与乙醛酸进行转氨作用,形成羟基丙酮酸,后者在甘油酸脱氢酶作用下,还原为甘油酸。最后,甘油酸再回到叶绿体,在甘油酸激酶的作用下生成PGA,进入卡尔文循环,再生RuBP,重复下一次C2循环。在这一循环中,2分子乙醇酸放出1分子CO2(碳素损失25%)。O2的吸收发生于叶绿体和过氧化体内,CO2的释放发生在线粒体内。 从碳素同化的角度看,光呼吸将光合作用固定的20%~40%的碳变为CO2放出;从能量的角度看,每释放1分子CO2需要消耗6.8个ATP和3个NADPH。显然,光呼吸是一种浪费。

CO2和O2竞争Rubisco的同一活性部位,并互为加氧与羧化反应的抑制剂。Rubisco催化反应的方向,是进行光合作用还是光呼吸,取决于外界CO2与O2浓度的比值。大气中CO2/O2比值很低,加氧酶活性就不可避免地表现出来。既然在空气中绿色植物光呼吸是不可避免的,那它在生理上有什么意义呢?目前认为其主要生理功能如下:

1.消除乙醇酸的毒害:乙醇酸的产生在代谢中是不可避免的。光呼吸消除乙醇酸的代谢作用,避免了乙醇酸积累,使细胞免受伤害。

2.维持C3途径的运转:在叶片气孔关闭或外界CO2浓度降低时,光呼吸释放的CO2能被C3途径再利用,以维持C3途径的运转。

碳同化的光呼吸

3.防止强光对光合机构的破坏:在强光下,光反应中形成的同化力会超过暗反应的需要,叶绿体中NADPH/NADP+的比值增高,最终电子受体NADP+不足,由光激发的高能电子会传递给O2,形成超氧阴离子自由基,对光合机构具有伤害作用,而光呼吸可消耗过剩的同化力,减少的形成,从而保护光合机构。

4.氮代谢的补充:光呼吸代谢中涉及多种氨基酸(甘氨酸、丝氨酸等)的形成和转化过程,它对绿色细胞的氮代谢是一个补充。

5. C3植物、C4植物、C3-C4中间植物和CAM植物的光合特征比较

根据高等植物光合作用碳同化途径的不同,可将植物划分成为C3植物、C4植物、C3-C4中间植物和CAM植物。但研究发现,高等植物的光合碳同化途径也可随着植物的器官、部位、生育期以及环境条件而发生变化。例如,甘蔗是典型的C4植物,但其茎杆叶绿体只具有C3途径;高粱也是典型的C4植物,但其开花后便转变为C3途径;高凉菜在短日照下为CAM植物,但在长日照、低温条件下却变成了C3植物。冰叶日中花,在水分胁迫时具有CAM途径,而水分状况适宜时,则主要依靠C3途径进行光合作用。

表2 C3植物、C4植物C3-C4中间植物和CAM植物的结构、生理特征比较

特 征

C3植物

C4植物

C3-C4中间植物

CAM植物

结构

BSC不发达,不含叶绿体,其周围叶肉细胞排列疏松

BSC含叶绿体,其周围叶肉细胞排列紧密呈“花环型”结构(kranz type)

BSC含叶绿体,但BSC的壁较C4植物的薄

BSC不发达,不含叶绿体,含较多线粒体,叶肉细胞的液泡大

绿素a/b

2.8±0.4

3.9±0.6

2.8~3.9

2.5~3.0

C3植物

C4植物

C3-C4中间植物

CAM植物

CO2补偿点

(μg L-1)

>40

5左右

5~40

光照下:0~200,黑暗中:

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)