求导和求原函数的区别
求导和求原函数的区别:含义不同,计算不同。
一、含义不同:原函数的导数是现在的函数。cosx的原函数是sinx+C,C是常数,cosx的导数是-sinx。
二、计算不同:对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。
原函数存在定理
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。?
求导和求极限是两个完全不同的概念.极限是导数的前提..
首先,导数的产生是从求曲线的切线这一问题而产生的,因此利用导数可以求曲线在任意一点的切线的斜率.
其次,利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”.
以y=x?为例,当x趋向于1的时候,y也趋向于1,这是极限.
把y=x?对x进行求导,得y=2x,该式的几何意义为函数在x点的切线的斜率为2x
即当x=1时y=2,表示函数y=x?在x=1点这一处的切线的斜率为k=2
y=x?对x求导后之所以会得到y=2x,是利用求切线的方法,在图像上取两点连成直线,当两点不断靠近最终成为一点的时候,该直线也便是图像在该点的切线.而推导求导这一过程的方法用的是求极限法.因此求导和求极限两者本身并不相同.
可以看下楼下@花苗贵树 的答案,很简洁。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!