百科狗-知识改变命运!
--

pythonK-NN算法是什么?

是丫丫呀1年前 (2023-11-19)阅读数 31#技术干货
文章标签算法

python中K-NN算法是什么?

本文教程操作环境:windows7系统、Python3.9.1,DELLG3电脑。

KNearestNeighbor算法⼜叫KNN算法,这个算法是机器学习⾥⾯⼀个⽐较经典的算法,总体来说KNN算法是相对⽐

较容易理解的算法。

1、定义

如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某⼀个类别,则该样本也属于这个类别。(起源:KNN最早是由Cover和Hart提出的一种分类算法);俗话就是:根据“邻居”来推断出你的类别。

2、基本流程

(1)计算已知类数据集中的点与当前点之间的距离2)按距离递增次序排序

(2)选取与当前点距离最小的k个点

(3)统计前k个点所在的类别出现的频率

(4)返回前k个点出现频率最高的类别作为当前点的预测分类

3、实例

代码涉及sklean库,需要安装sklearn库。

fromsklearn.datasetsimportload_iris

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.preprocessingimportStandardScaler

fromsklearn.neighborsimportKNeighborsClassifier

#1.获取数据

iris=load_iris()

#2.数据基本处理:训练集的特征值x_train测试集的特征值x_test训练集的⽬标值y_train测试集的⽬标值y_test,

'''

x:数据集的特征值

y:数据集的标签值

test_size:测试集的⼤⼩,⼀般为float

random_state:随机数种⼦,不同的种⼦会造成不同的随机采样结果。相同的种⼦采样结果相同

'''

x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.2,random_state=22)

#3.特征工程-特征预处理

transfer=StandardScaler()

pythonK-NN算法是什么?

x_train=transfer.fit_transform(x_train)

x_test=transfer.transform(x_test)

#4.机器学习-KNN

#4.1实例化一个估计器

estimator=KNeighborsClassifier(n_neighbors=5)

#4.2模型训练

estimator.fit(x_train,y_train)

#5.模型评估

#5.1预测值结果输出

y_pre=estimator.predict(x_test)

print("预测值是:\n",y_pre)

print("预测值和真实值的对比是:\n",y_pre==y_test)

#5.2准确率计算

score=estimator.score(x_test,y_test)

print("准确率为:\n",score)

以上就是python中K-NN算法的介绍,希望能对大家有所帮助。更多Python学习教程请关注IT培训机构:开发教育。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)