百科狗-知识改变命运!
--

python中RNN和LSTM的基本介绍

梵高1年前 (2023-11-19)阅读数 40#技术干货
文章标签神经网络

python中RNN和LSTM的基本介绍

1、RNN

python中RNN和LSTM的基本介绍

简单的神经网络和卷积神经网络都有一个主要的特点,那就是都不具备记忆能力,也就是说,它们都是分别处理每一个输入,而不存在前、后两个输入之间的关系。例如,您需要处理数据点或时序,您需要同时向网络显示整个时序,也就是将时序转换为单一数据点输入。采用这种输入方式的网络叫做前向神经网络(feddforwardnetwork)。

为了使这个过程更加容易理解,我们用简单的循环逻辑来实现一个RNN的前向传播。

#简单的RNN实现Numpy实现

importnumpyasnp

timesteps=100

input_feature=32

output_fearture=64

inputs=np.random.random((timesteps,input_feature))#生成100,32形状的矩阵

print(inputs)

state_t=np.zeros((output_fearture,))#生成64个全为0的数

print(state_t)

w=np.random.random((output_fearture,input_feature))

u=np.random.random((output_fearture,output_fearture))

b=np.random.random((output_fearture,))

successive_outputs=[]

forinput_tininputs:

output_t=np.tanh(np.dot(w,input_t)+np.dot(u,state_t)+b)#np.dot表示数组点积

successive_outputs.append(output_t)

state_t=output_t

final_output_sequence=np.stack(successive_outputs,axis=0)

print(final_output_sequence)

2、LSTM

在理论上,RNN应该能够记住在过去的时间里看到过的信息,但是实际上它不可能学习长期存在的信息,主要是由于梯度消失的问题。因此研究人员设计了LSTM(longshort-termmemory),也就是所谓的长短期记忆。

与RNN相比,LSTM多了一种跨域携带信息的多时间步法(细胞状态C),这种步法类似于传送带,它运行方向与你所处理的序列方向平行,而序列中的信息可以随时跳到传送带上,然后被传送带送到更远的时间步,必要时还能原封不动地跳回来。那是LSTM的原理。

以上就是python中RNN和LSTM的基本介绍,希望能对大家有所帮助!更多Python学习教程请关注IT培训机构:开发教育。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)