随机变量是什么?
随机变量是表示随机现象各种结果的变量。
例如某一时间内地铁站的人流数量,一台机器在一定时间内出现错误的次数等等,都是随机变量的实例。
在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。
因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。
扩展资料:
随机变量的表示方法:
例如掷一颗骰子出现的点数,电话交换台在一定时间内收到的呼叫次数,随机抽查的一个人的身高,悬浮在液体中的微粒沿某一方向的位移,等等,都是随机变量的实例。
一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω(见概率)。随机变量x是定义于Ω上的函数,即对每一基本事件ω∈Ω,有一数值x(ω)与之对应。
以掷一颗骰子的随机试验为例,它的所有可能结果见,共6个,分别记作ω1,ω2,ω3,ω4,ω5,ω6,这时,Ω={ω1,ω2,ω3,ω4,ω5,ω6},而出现的点数这个随机变量x,就是Ω上的函数x(ωk)=k,k=1,2,…,6。
又如设Ω={ω1,ω2,…,ωn}是要进行抽查的n个人的全体,那么随意抽查其中一人的身高和体重,就构成两个随机变量X和Y,它们分别是Ω上的函数:X(ωk)=“ωk的身高”,Y(ωk)=“ωk的体重”,k=1,2,…,n。
一般说来,一个随机变量所取的值可以是离散的(如掷一颗骰子的点数只取1到6的整数,电话台收到的呼叫次数只取非负整数),也可以充满一个数值区间,或整个实数轴(如液体中悬浮的微粒沿某一方向的位移)。
百度百科-随机变量
一、随机变量与函数的关系
1.定义1
设在某个变化过程中存在两个变量x,y,若对于某一非空数集中的每一个x值,按照某一确定的关系f都有唯一一个实数y 与之对应,则称变量y是变量x的函数,记为y=f(x)。其中x称为自变量,y称为因变量。使函数有意义的x的取值范围称为函数的定义域,通常用D表示;y的取值范围称为函数的值域,通常记为R。
这是我们熟知的函数的概念,事实上它是两个非空实数集合之间建立的映射关系。构成函数要求对每一个x,有唯一确定的y与之对应。
在概率论中为了用简洁精练的语言描述随机试验的结果,并用严格精确的数学方法研究随机现象,常采用将随机试验的结果数量化的方式来表示随机事件。也就是对随机试验样本空间中每一个样本点(基本事件),通过定义一个函数,赋予它唯一的一个实数值,这样的函数就称为随机变量。
2.定义2
设E是一个随机试验,它的样本空间为Ω={e},如果对于Ω内每一个e都有一个实数X(e)和它对应,则称X(e)为随机变量,简记为X。
随机变量是由随机事件得到的变量,名为变量,实质上是一个函数,是从样本空间到实数上的一个单值函数,X(e):S→R。随机变量的引入大大简化了随机事件的刻画,对进一步研究随机事件的概率也起到了优化的作用。
概率论中重点考察的概率实际上是值域缩小到[0,1]区间的一个函数。自变量为随机事件,因变量为该随机事件发生的可能性的大小。对每一个随机事件(自变量),在对应法则下,能确定其发生的可能性大小——概率(因变量)。引入随机变量之后,概率就为实数到实数上的一个对应关系,等价于高等数学里定义的函数概念。
二、随机变量与函数的区别
随机变量又不同于高等数学中的函数。它的自变量是样本点,定义域是样本空间,由于自变量的随机性,在试验完成之前,不能预先知道哪个样本点会出现,也就没办法预知对应的函数值,所以这个函数的取值也是具有随机性的。这也是随机变量与普通变量(函数)的本质区别。因此对随机变量的分析,会重点放在其取值的可能性上。而对函数的分析更侧重函数的取值、性质和应用方面的研究。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!