数组,矩阵,向量有什么区别
矩阵就是由m*n个数排列成m行n列的数表
向量是由n个实数组成的有序数组,是一个n*1的矩阵(n维列向量)或是一个1*n的矩阵(n维行向量)
向量组就是有限个相同维数的行向量或者列向量组成的一组矩阵
简单的说,一个向量是一个矩阵,一个向量组是n个矩阵,一个n*1或1*n的矩阵可以称为是一个向量,一个m*n的矩阵不是向量也不是向量组
向量a.b与向量axb的区别是什么?谢谢你们的帮助
一、概念不同
1、矢量
矢量(vector)是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。在计算机中,矢量图可以无限放大永不变形。
2、向量
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
3、相量
相量是电子工程学中用以表示正弦量大小和相位的矢量。当频率一定时,相量表征了正弦量。将同频率的正弦量相量画在同一个复平面中(极坐标系统),称为相量图。
从相量图中可以方便的看出各个正弦量的大小及它们之间的相位关系,为了方便起见,相量图中一般省略极坐标轴而仅仅画出代表相量的矢量。
二、用法不同
1、矢量
矢量只有在同方向上才可比较大小,不同方向上的矢量一般不能比较大小。
2、向量
向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
3、相量
相量仅适用于频率相同的正弦电路。由于频率一定,在描述电路物理量时就可以只需考虑振幅与相位,振幅与相位用一个复数表示,其中复数的模表示有效值,辐角表示初相位。这个复数在电子电工学中称为相量。
三、意义不同
1、矢量
矢量有两种,一种为只有大小与方向的物理量,譬如速度,我们称之为“奇矢量”;另外一种不但有大小与方向的物理量,而且还在矢量间作用产生效果所需时间的一个量,譬如力,我们称之为“偶矢量”或“极限矢量(即时、有上限)”,因为它们在矢量间作用产生效果所需的时间是即时与光速的。
2、向量
行列式的值是一个数字,表示向量所在空间的元素 大小。
比如,在平面直角坐标系中,整个平面可以由长宽均为1的方格构成,这个方格的大小为1。这个方格就是平面直角坐标系中的元素,大小为1。
3、相量
分析正弦稳态的有效方法是相量法,相量法的基础是用一个称为相量的向量或复数来表示正弦电压和电流。相量由正弦电压的有效值U和初相ψ构成,复数的模表示电压的有效值,其辐角表示电压的初相。
百度百科-矢量
百度百科-向量
百度百科-相量
1、意义不同
a.b是向量的内积;axb是向量的外积,方向与向量a,向量b垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。。
2、表示的东西不同
a向量点积b向量,结果是个数,等于abcos(a,b),(a,b)是a向量与b向量的夹角;a向量叉积b向量,结果是个向量,方向与a向量和b向量所在平面垂直。
扩展资料:
向量的相关定律:
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:
① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
向量的数量积的运算律
a·b=b·a(交换律)
(λa)·b=λ(a·b)(关于数乘法的结合律)
(a+b)·c=a·c+b·c(分配律)
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!