窗口傅里叶变换与傅里叶变换有什么不同
傅里叶变换,从公式中我们知道,要从一个信号来得到其傅里叶变换(频谱),必须取无限长的时间量(-∞,+∞),即必须要获得时域中的全部信息,反之要利用频谱来描述信号时,无论这个信号的时间多么短,都需要用整个频域来描述。在某一时间段[t1,t2]对应的频谱信息傅里叶变换无法给出,而这种局部信息又常常是我们十分感兴趣的。
为了解决这种局部性的问题,人们提出了“窗口Fourier变换”的概念,窗口傅里叶变换或短时傅里叶变换(Short Time FourierTransform, STFT)能够完成局部分析的关键是“窗口”,窗口的尺度是局部性程度的表征。当窗函数取为高斯窗时一般称为Gabor变换。选高斯窗的原因在于:1)高斯函数的Fourier变换仍是高斯函数,这使得Fourier逆变换也用窗函数局部化了,同时体现了频率域的局部化;2)根据Heisenberg测不准原理,高斯函数窗口面积已达到测不准原理下界,是时域窗口面积达到最小的函数,即Gabor变换是最优的STFT。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)