数学期望和平均值一样吗?有何区别?
期望可以理解为加权平均值,权数是函数的密度.
对于离散函数,E(x)=∑f(xi)xi
平均值一般就是算数平均值.
一般在统计中,你希望知道整体的期望,所以就用样本的平均值来估计期望.例如你想知道你打靶的水平是怎么样的,你就打10靶作为样本,它的平均值是你打靶水准的估计值.
样本的平均值是期望的无偏估计.
分布函数和密度函数的关系:已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数。
当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。
分布函数是概率统计中重要的函数,正是通过它可用数学分析的方法来研究随机变量。
分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
实际上密度函数和分布函数之间的区别是相对比较容易总结的,主要分为三个方面:
1、密度函数是一段区间的概率除以区间长度,值为正数,可大可小;而分布函数则是可以使用数学分析方法研究随机变量的一种曲线。
2、密度函数一般只针对连续型变量,而分布函数则是既针对连续型也针对离散型随机变量。
3、求解分布函数的时候要进行分类讨论和定积分计算,求解密度函数的时候需要进行求导。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!