数学建模和数学模型有什么区别?
1、原理不同
数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。
数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
2、研究方向不同
数学建模:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学模型:所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。
3、建立的基础不同
数学建模:是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性,逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性。
数学模型:建立模型要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
扩展资料:
数学模型的要求
1、真实的、系统的、完整的,形象的反映客观现象;
2)必须具有代表性;
3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;
4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
百度百科-数学建模
百度百科-数学模型
据说,这些书上都有定义。但运用全靠自己多做题。
通过模型来揭示原型的形态、特征和本质的方法称为模型法。模型法借助于与原型相似的物质模型或抽象反映原型本质的思想模型,间接地研究客体原形的性质和规律。
类比是将一类事物的某些相同方面进行比较,以另一事物的正确或谬误证明这一事物的正确或谬误。这是运用类比推理形式进行论证的一种方法。
豁免的就不说了。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!