余弦定理与勾股定理有什么区别?
余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。该图中,a与b应互换位置
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
(注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
证明:
∵如图,有a→+b→=c→
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
整理得到c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)
再拆开,得c^2=a^2+b^2-2*a*b*CosC
同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
---------------------------------------------------------------------------------------------------------------
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。
勾股定理
勾股定理:
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a+b=c; 即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a+b=c ,那么这个三角形是直角三角形。(称勾股定理的逆定理)
最早的勾股定理
从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图
设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米
a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股形。
《周髀算经》简介
勾股。 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。
[编辑本段]伽菲尔德证明勾股定理的故事
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
如下:
解:在网格内,以两个直角边为边长的小三角形面积,等于以斜边为边长的的三角形面积。
勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,
a^2;+b^2;=c^2;
说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。
举例:如直角三角形的两个直角边分别为3、4,则斜边c= a+b=9+16=25
则说明斜边为5。
勾股定理部分习题
第一章 勾股定理一、 勾股定理的内容,勾股定理是怎样得到的,从定理的证明过程中你得到了什么启示?
练习:
1、在△ABC中,∠C =90°. (1) 若a =2,b =3则以c为边的正方形面积是多少? (2) 若a =5,c =13.则b是多少? .(3) 若c =61,b =11.则a是多少? (4) 若a∶c =3∶5且c =20则 b 是多少? (5) 若∠A =60°且AC =7cm则AB = _cm,BC = _cm.
2、直角三角形一条直角边与斜边分别为8cm和10cm.则斜边上的高等于 _cm.
3、等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为 _cm.
4、△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD = _cm.
5、已知:△ABC中,∠ACB=90°,CD⊥AB于D,BC= ,DB=2cm ,则BC=_ cm, AB= _cm, AC= _cm.
6、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为_______。
7、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米。
8、已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
A、25 B、14 C、7 D、7或25
9、小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是
A. 小丰认为指的是屏幕的长度; B. 小丰的妈妈认为指的是屏幕的宽度;
C. 小丰的爸爸认为指的是屏幕的周长; D. 售货员认为指的是屏幕对角线的长度
二、 你有几种证明一个三角形是直角三角形的方法?
练习:
(×经典练习×)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五,后人概括为“勾三,股四,弦五”。
(1)观察:3、4、5、,5、12、13、,7、24、25,……发现这几组勾股数的勾都是奇数,且从3起就没有间断过。计算0.5(9+1)与0.5(25-1)、0.5(25+1),并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式。
(2)根据(1)的规律,若用n(n为奇数且n≥3)来表示所有这些勾股数的勾,请你直接用含n的代数式来表示它们的股和弦。
答案:
(1) 0.5(9+1)∧2+0.5(25-1)∧2=169=0.5(25+1)∧2 0.5(13+1)∧2+0.5(49-1)∧2=0.5(49+1)∧2
(2) 股:0.5(n^2-1) 弦:0.5(n^2+1)
三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( )
A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.
1、在ΔABC中,若AB2 + BC2 = AC2,则∠A + ∠C= °。
2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( )
(A) 直角三角形 (B)锐角三角形
(C)钝角三角形 (D)以上答案都不对
已知三角形的三边长分别是2n+1,2n +2n, 2n +2n+1(n为正整数)则最大角等于_________度.
三角形三个内角度数比为1:2:3,它的最大边为M,那么它的最小边是_____.
斜边上的高为M的等腰直角三角形的面积等于_____.
3、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。
美国总统的证明方法图各具特色的证明方法三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。
最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。
下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H?E?杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。
如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。
下图的证明方法,据说是L?达?芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。
欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:
(AC)2=2△JAB=2△CAD=ADKL。
同理,(BC)2=KEBL
所以
(AC)2+(BC)2=ADKL+KEBL=(BC)2
印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,
婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有
c/b=b/m,
c/a=a/n,
cm=b2
cn=a2
两边相加得
a2+b2=c(m+n)=c2
这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。
有几位美国总统与数学有着微妙联系。G?华盛顿曾经是一个著名的测量员。T?杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得
即
a2+2ab+b2=2ab+c2
a2+b2=c2
这种证法,在中学生学习几何时往往感兴趣。
关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。
证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。
过C引CM‖BD,交AB于L,连接BC,CE。因为
AB=AE,AC=AG ∠CAE=∠BAG,
所以 △ACE≌△AGB
SAEML=SACFG (1)
同法可证
SBLMD=SBKHC (2)
(1)+(2)得
SABDE=SACFG+SBKHC,
即 c2=a2+b2
证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。
SCFGH=SABED+4×SABC,
所以 a2+b2=c2
证法3 如图26-4(梅文鼎图)。
在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设
五边形ACKDE的面积=S
一方面,
S=正方形ABDE面积+2倍△ABC面积
=c2+ab (1)
另一方面,
S=正方形ACGF面积+正方形DHGK面积
+2倍△ABC面积
=b2+a2+ab. (2)
由(1),(2)得
c2=a2+b2
证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。
设五边形EKJBD的面积为S。一方面
S=SABDE+2SABC=c2+ab (1)
另一方面,
S=SBEFG+2?S△ABC+SGHFK
=b2+ab+a2
由(1),(2)
得出论证
都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edaedu.com/21010000/vcm/0720ggdl.doc
勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif
勾股定理应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
勾股定理在我们生活中有很大范围的运用.
勾股定理的16种验证方法(带图):http:blog.cersp.com/UploadFiles/2007/11-25/1125862269.doc
练习题:一个等腰三角形,三个内角的比为1:1:10,腰长为10cm,则这个三角形的面积为____
解:由题意得此三角形各角角度为15度 15的150度
设底边上的高为h 底边长为2t
易得sin15=sin60cos45-cos60sin45=h/10
解得h=5(√6-√2)/2
又tan15=(tan60-tan45)/(1-tan60tan45)=5(√6-√2)/2t
解得t=5(√6+√2)
故面积s=th=50 `
勾股定理的别名
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用.正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称.
我国是发现和研究勾股定理最古老的国家.我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7~6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日.
在法国和比利时,勾股定理又叫“驴桥定理”.还有的国家称勾股定理为“平方定理”.
在陈子后一二百年,希腊的著明数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
dota中,笛子怎么合成的?有什么属性加成和特殊技能,在团战中担当什么角色?
02025926:0F999999
02025A94:01
输入↑这2个就有无限大师球哦!
02025A96:63
输入↑这个就有无限金钱哦!
这些都是有效的,不是那些网站胡乱写的那些,是我很朋友自己研究出来的耶,记住这些只有红宝石才能用哦!
梦梦 02031F84:381A
迪奥西斯 02031F84:3A1A 游 戏 天 堂 编辑
金银 02031F84:421A
然后直接升到一百级,爽吧!
02023e94:270f 注:不想升级时可删掉或停止
SHOW ME THE MONEY!!!!!!!! 有钱也很重要
02005230:00000000(8个0)
03005B6A:63
买氨基酸(9800)一个一个买,会看到口袋里是99个99个的多,把其余的买掉,钱爆满!!!!!比直接找金钱金手指快多了
购物!
コトキタゥソ商店才生效(第一城市)
02005230:00000000(8个0)
03005B6A:63
输入以↑两条买东西不用钱。(要一起输入噢?)
按A, 问你确定与否不要按
用03005B72:XX输入金手指, 然后再删掉金手指, 回到VBA按A买下, 结果就有了
XX列表
球
0001 大师球
0002 超力怪兽球
0003 超级球(比怪兽球更厉害些)
0004 怪兽球(普通的球)
0005 砂狐球(砂狐乐园专用球)
0006 触网球(容易抓水和虫类的怪兽)
0007 大布斯球(容易抓海底的怪兽)
0008 尼斯道球(怪兽越弱越容易抓)
0009 利比道球(容易抓抓过的球)
000a 达伊玛球(回合数越长越容易抓)
000b 高基石球(抓到的怪兽变亲密)
000c 布雷密球(珍惜怪兽球)
道具
000d 伤药(体力恢复20)
000e 解毒药(恢复毒状态)
000f 烧伤恢复(恢复烧伤状态)
0010 解冻药(恢复冻状态)
0011 清醒药(恢复沉睡状态)
0012 麻痹恢复(恢复麻痹状态)
0013 恢复药(全恢复体力与所有状态)
0014 慢谈药(体力全恢复)
0015 伤药(体力恢复200)
0016 好伤药(体力恢复50)
0017 万能恢复(全部恢复)
0018 精神片(死亡恢复体力一半)
0019 精神草(死亡全恢复体力)
001a 美味水(恢复体力50)
001b 精神汽水(恢复体力60)
001c 米力液(恢复体力80)
001d 木木奶(恢复体力100)
001e 力量粉(恢复体力50,很苦粉,减底怪兽亲密度)
001f 力量根(恢复体力200,很苦根,减底怪兽亲密度)
0020 万能粉(全恢复状态,非常苦的粉,大大减低与怪兽的亲密度)
0021 复活草(死亡复活,很苦的草)
0022 pp艾依(1种技能值恢复10)
0023 pp力卡(1种技能值全恢复)
0024 (?)
0025 pp最大(1只怪兽的全部技能值全恢复)
0026 飞音饼(恢复全部异常状态)
0027 蓝玻璃(恢复沉睡状态,可用无限次)
0028 黄玻璃(恢复混乱状态,可用无限次)
0029 红玻璃(恢复颓废状态,可用无限次)
002a 黑玻璃(不遇野生怪兽)
002b 白玻璃(容易遇野生怪兽)
002c 树果汁(恢复体力20)
002d 圣是(死亡恢复全部体力,异常状态恢复)
002e 浅水盐(看看洞用的道具)
002f 浅水贝(看看洞用的道具)
0030 红碎片(换进化石的道具)
0031 蓝碎片(换进化石的道具)
0032 黄碎片(换进化石的道具)
0033 绿碎片(换进化石的道具)
0034—03e (?)
003f 最大上升(体力基础值提高)
0040 赞美语(攻击基础值提高)
0041 落海夫(防御基础值提高)
0042 因得西(敏捷基础值提高)
0043 立麦森(特攻基础值提高)
0044 奇异甜食(怪兽升1级)
0045 值上升(技能值的最大值上升)
0046 极道山果(德望基础值提高)
0047 值最大(技能值提高到最大)
0048 ?(?)
0049 效果卡(战斗中…能避开对方的攻击,用于装备)
004a 清洗物(战斗中…容易命中要害,用于装备)
004b 布拉斯力量(战斗中…攻击力上升,用于装备)
004c 力道(战斗中…防御力上升,用于装备)
004d 敏捷力(战斗中…敏捷上升,用于装备)
004e 纪念打(战斗中…技能容易命中)
004f 特别上升(战斗中…特攻的威力上升,用于装备)
0050 皮皮木偶(在战斗中逃脱)
0051 小松鼠尾(在战斗中逃脱)
0052—05c (?)
005d 太阳石(让独特的怪兽进化)
005e 月亮石(让独特的怪兽进化)
005f 火焰石(让独特的怪兽进化)
0060 雷电石(让独特的怪兽进化)
0061 水石(让独特的怪兽进化)
0062 珊瑚石(让独特的怪兽进化)
0063—066 (?)
0067 小的树果(普通的树果容易成熟)
0068 大的树果(珍贵的树果难成熟)
0069 (?)
006a 珍珠(美丽的珍珠容易成熟)
006b 大珍珠(很美丽的大珍珠难成熟)
006c 星沙(美丽的红色的沙子)
006d 星星碎片(美丽的红宝石碎片)
006e 金珠(金星)
006f 心灵碎片(可以恢复忘却的技能)
0070—078 (?)
0079 彩色邮件(针鼠模样的信件)
007a 哈伯邮件(海鸥模样的信件)
007b 闪光邮件(皮卡丘模样的信件)
007c 机械邮件(小磁怪模样的信件)
007d 鸟烟邮件(食叶兽模样的信件)
007e 十字邮件(皮皮鲸模样的信件)
007f 珍贵邮件(有持有怪兽模样的信件)
0080 阴影邮件(钻墙怪模样的信件)
0081 热带邮件(美丽花模样的信件)
0082 花边邮件(有持有怪兽模样的信件)
0083 神奇邮件(豪华的信件)
0084 怀旧邮件(3只怪兽的信件)
全部招式机机器
招式机器01:0121
招式机器02:0122
招式机器03:0123
招式机器04:0124
招式机器05:0125
招式机器06:0126
招式机器07:0127
招式机器08:0128
招式机器09:0129
招式机器10:012A
招式机器11:012B
招式机器12:012C
招式机器13:012D
招式机器14:012E
招式机器15:012F
招式机器16:0130
招式机器17:0131
招式机器18:0132
招式机器19:0133
招式机器20:0134
招式机器21:0135
招式机器22:0136
招式机器23:0137
招式机器24:0138
招式机器25:0139
招式机器26:013A
招式机器27:013B
招式机器28:013C
招式机器29:013D
招式机器30:013E
招式机器31:013F
招式机器32:0140
招式机器33:0141
招式机器34:0142
招式机器35:0143
招式机器36:0144
招式机器37:0145
招式机器38:0146
招式机器39:0147
招式机器40:0148
招式机器41:0149
招式机器42:014A
招式机器43:014B
招式机器44:014C
招式机器45:014D
招式机器46:014E
招式机器47:014F
招式机器48:0150
招式机器49:0151
招式机器50:0152
0153 秘传机01
0154 秘传机02
0155 秘传机03
0156 秘传机04
0157 秘传机05
0158 秘传机06
0159 秘传机07
015A 秘传机08
0085 树果01
0086 树果02
0087 树果03
0088 树果04
0089 树果05
008A 树果06
008B 树果07
008C 树果08
008D 树果09
008E 树果10
008F 树果11
0090 树果12
0091 树果13
0092 树果14
0093 树果15
0094 树果16
0095 树果17
0096 树果18
0097 树果19
0098 树果20
0099 树果21
009A 树果22
009B 树果23
009C 树果24
009D 树果25
009E 树果26
009F 树果27
00A0 树果28
00A1 树果29
00A2 树果30
00A3 树果31
00A4 树果32
00A5 树果33
00A6 树果34
00A7 树果35
00A8 树果36
00A9 树果37
00AA 树果38
00AB 树果39
00AC 树果40
00AD 树果41
00AE 树果42
00AF 树果43
00FE 红手巾
00FF 篮手巾
0100 粉手巾
0101 绿手巾
0102 黄手巾
0103 风马自行车
0104 硬币盒子
0105 探宝器
0106 普通钓竿
0107 好钓竿
0108 超级钓竿
0109 船票
010A 比赛通行证
010C 皮皮鲸喷壶
010D 天力行李
010E 背包
010F 地下钥匙
0110 沙道自行车
0111 怪兽盒
0112 代后的信
0113 梦幻票
0114 红色玉石
9115 蓝色玉石
0116 探知器
0117 沙道眼睛
0118 陨石
0119 1室钥匙
011A 2室钥匙
011B 4室钥匙
011C 6室钥匙
011D 仓库钥匙
011E 木根化石
011F 指甲化石
0120 デボァスコ-ド
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!