方差、标准差、协方差、有什么区别?
方差、标准差、协方差区别如下:
1、概念不同
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;
标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根;
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
2、计算方法不同
方差的计算公式为:
式中的s?表示方差,x1、x2、x3、.......、xn表示样本中的各个数据,M表示样本平均数;
标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n);
协方差计算公式为:Cov(X,Y)=E[XY]-E[X]E[Y],其中E[X]与E[Y]是两个实随机变量X与Y的期望值。
3、意义不同
方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;
而协方差是对2组数据进行统计的,反映的是2组数据之间的相关性。
扩展资料
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是要说的标准差(SD)。
在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。
百度百科—方差
百度百科—标准差
百度百科—协方差
标准差和方差都是用来衡量数据的离散程度的统计指标。
方差是各个数据与其均值之差的平方和的平均值。它是一个平均的度量,表示数据集中的每个数据与整体均值的偏离程度。方差越大,说明数据的离散程度越大。
标准差是方差的平方根。它与方差具有相同的单位,并且通常用于度量数据的离散程度。标准差越大,说明数据的离散程度越大。
因此,标准差和方差之间的联系是,标准差是方差的平方根。它们都是用来度量数据的离散程度,只是单位不同。标准差相对于方差更易于理解,因为它与原始数据的单位一致。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!