直四棱柱和正四棱柱的区别
区别:
1、直四棱柱:侧棱垂直于底面的四棱柱叫做直四棱柱。直四棱柱的侧棱长与高相等;直四棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。
2、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。棱柱用表示底面各顶点的字母来表示。
3、棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。
4、四棱柱:底面为四边形的棱柱是四棱柱。斜四棱柱:侧棱不垂直于底面的四棱柱叫做斜四棱柱。
直四棱柱:
侧面积公式:S侧=C*h(底面周长*高)。
全面积公式:S全=C*h+2*S底面(底面周长*高+2个底面面积)。
体积公式:V=S*h(底面面积*高)。
没有直三棱锥一说,只有正三棱锥。所以就不存在直三棱锥和正三棱锥的区别。
正三棱锥的相关介绍具体如下:
正三棱锥锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。
正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形。正三棱锥的底面是等边三角形;侧面是三个全等的等腰三角形;顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。
扩展资料
三棱锥它有四个面、四个顶点、六条棱、四个三面角、六个二面角与十二个面角。若四个顶点为A,B,C,D,则可记为四面体ABCD,当看做以A为顶点的三棱锥时,也可记为三棱锥A-BCD。
四面体的每个顶点都有惟一的不通过它的面,称为该顶点的对面,原顶点称这个面的对顶点。在四面体的六条棱中,没有公共端点的两条称为对棱。
四面体有三双对棱。且对棱的中点连结的线段(三条)彼此平分于同一点即四面体的重心,亦称四面体的形心。四面体的四个顶点与所对面(三角形)的重心连线(四条线段)必相交于同一点,即四面体的重心。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!