高中数学里映射的概念究竟是什么意思?
映射概念:在数学里,映射则是个术语,指两个元素的集之间元素相互“对应”的关系,为名词;亦指“形成对应关系”这一个动作,动词。
“映射”或者“投影”,需要预先定义投影法则部分的函数后进行运算。因此“映射”计算可以实现跨维度对应。相应的微积分属于纯数字计算无法实现跨维度对应,运用微分模拟可以实现本维度内的复杂模拟。 映射可以对非相关的多个集合进行对应的近似运算,而微积分只能在一个连续相关的大集合内进行精确运算。
相同点:
(1)函数与映射都是两个非空集合中元素的对应关系;
(2)函数与映射的对应都具有方向性;
(3)A中元素具有任意性,B中元素具有唯一性;即A中任意元素B中都有唯一元素与之对应.(多值函数除外,这类函数一般不纳入函数的范畴)
区别:
1、函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。
2、函数要求每个值域都有相应的定义域与其对应,也就是说,值域这个集合不能有剩余元素,而映射可以有剩余。
但是不可以把物理学看作是数学在现实世界的映射。
这里需要先理清楚物理学和数学分别是什么。物理学是研究自然界中事物运动变化规律的学科,而数学则是研究如何用最简练的方法表达逻辑推论的学科。这里最大的差别就是,物理学研究的是实在的事物,而数学研究的是抽象化的逻辑概念。所以就会产生下面一个逻辑关系:
一切实在的事物都可以抽象出对应的逻辑概念
特定的逻辑概念不一定能有实在的事物与其对应
根据上面的逻辑,就可以得出下面的一个推论:
一切物理学的结论都可以用数学的方式进行表达
数学表达不一定能有具体的物理学结论与其对应
根据上述结论,可以看出物理学与数学并不满足映射关系的定义。
另外从功能上来说,数学并不是科学,而是一门语言或一种工具。这样从语言的角度上来看,也同样有下面的关系:
一切实在的事物都能找到可对其进行描述的语言
特定的词汇不一定能有实在的事物与其对应
因此从这个角度看,数学与物理学,或者说数学与现实世界,并不满足映射关系的定义。
设两个集合A和B,和它们元素之间的对应关系R,如果对于A中的每一个元素,通过R在B中都存在唯一一个元素与之对应,则该对应关系R就称为从A到B的一个映射(Mapping)。其中A称为原象,B称为象。
映射是数学中描述了两个集合元素之间一种特殊的对应关系的。
映射在不同的领域有很多的名称,它们的本质是相同的。如函数,算子等等。这里要说明,函数是两个数集之间的映射,其他的映射并非函数。
一一映射(双射)是映射中特殊的一种,即两集合元素间的唯一对应,通俗来讲就是一个对一个。
(由定义可知,图1中所示对应关系不是映射,而其它三图中所示对应关系就是映射。)
或者说,设A B是两个非空的集合,如果按,某一个确定的对应关系f.使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:B A为从集合A到集合B的一个映射
映射的成立条件简单的表述就是下面的两条:
1、定义域的遍历性:X中的每个元素x在映射的值域中都有对应对象;
2、对应的唯一性:定义域中的一个元素只能与映射值域中的一个元素对应;
映射的分类:
映射的不同分类是根据映射的结果进行的,从下面的三个角度进行:
1、根据结果的几何性质分类:满射(到上)与非满射(内的);
2、根据结果的分析性质分类:单射(一一的)与非单的;
3、同时考虑几何与分析性质:满的单射(一一对应)。
注:右图中(1)不是A到B的映射,(2)(3)(4)都是A到B的映射。
映射的的个数与A,B的元素的个数关系
[编辑本段]
集合AB的元素个数为m,n,
那么,从集合A到集合B的映射的个数为n的m次
■函数和映射,满映射和单映射的区别
函数是数集到数集映射,并且这个映射是“满”的。
即满映射f: A -> B是一个函数,其中原像集A称做函数的定义域,像集B称做函数的值域。
“数集”就是数字的集合,可以是整数、有理数、实数、复数或是它们的一部分等等。
“映射”是比函数另广泛一些的数学概念,它就是一个集合到另一个集合的一种确定的对应关系。即,若f是集合A到集合B的一个映射,那么对A中的任何一个元素a,集合B中都存在唯一的元素b与a对应。我们称a是原像,b是像。写作f: A -> B,元素关系就是b = f(a).
一个映射f: A -> B称作“满”的,就是说对B中所有的元素,都存在A中的原像。
在函数的定义中要求是满射,就是说B必须恰好是值域,不应比值域大。(这个定义来源于一般中学中的讲法,实际上许多数学书上并不一定定义函数是满射。)
象集中每个元素都有原象的映射称为满射
原象集中不同元素的象不同的映射称为单射
单射和满射可共同决定为一一映射。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!