百科狗-知识改变命运!
--

函数的什么点叫间断点?有几类间断点?

桃子1年前 (2023-12-17)阅读数 4#综合百科
文章标签函数极限

一、第一类间断点:左右极限存在。

当左右极限相等,则称为可去间断点;左右极限不等,则称为跳跃间断点。

设Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。

又如果:

1、f(x-)=f(x+)≠f(x),或f(x)无意义,则称Xo为f(x)的可去间断点。

2、f(x-)≠f(x+),则称Xo为f(x)的跳跃间断点。

二、第二类间断点:左右极限至少有一个不存在。

如果有一个极限趋于无穷大,则称为无穷间断点;否则称为振荡间断点。

第二类间断点是指函数的左右极限至少有一个不存在。第二类间断点有非常多种,如无穷间断点,振荡间断点,单侧间断点,狄利克雷函数间断点等等。

第二类间断点:函数的左右极限至少有一个不存在。

1、若函数在x=Xo处的左右极限至少有一个无穷不存在,则称x=Xo为f(x)的无穷间断点。例y=tanx,x=π/2。

2、若函数在x=Xo处的左右极限至少有一个振荡不存在,则称x=Xo为f(x)的振荡间断点。例y=sin(1/x),x=0。

扩展资料

函数间断点的判定:

1、求函数的定义域,找出分割定义域为定义区间的分割点与分段函数的分界点xk;

2、对xk求函数的左右极限,由左右极限的存在性及相关的极限值与变化趋势,确定间断点类型。

3、间断点存在的位置为分段函数的分界点,或者函数定义区间的分割点。没有定义的点构成区间则不为函数的间断点,为函数没有定义的区间。

百度百科-第一类间断点

百度百科-第二类间断点

跳跃间断点和可去间断点有什么区别?

函数的什么点叫间断点?有几类间断点?

A)一点的两边(从数轴上看就是差为大于0的方向和小于0的方向)距离无限小的范围内存在另外的点;

B)按函数关系(或方程定义)不存在,通过特别定义 可使该点连续的点;

如:y=(x^2-1)/(x-1) 中 点(1 ,2)即为可去间断点。

C)函数以阶跃方式给出,阶跃的边界处的点;

如:y=1 x∈(-∞,0]

-1 x∈(0,+∞) 中,x=0处的间断点即为阶跃间断点。

D)间断点在无穷远处。如: y=1/x

可去间断点和跳跃间断点属于第一类间断点。具体区别如下:

1、从定义理解:可去间断点存在左右极限且相等,跳跃间断点存在左右极限但不相等。

2、从图像理解:可去间断点左右极限应趋向于一处,跳跃间断点图像趋向于两处。

在第一类间断点中,有两种情况,左右极限存在是前提。左右极限相等,但不等于该点函数值f(x0)或者该点无定义时,称为可去间断点,如函数y=(x^2-1)/(x-1)在点x=1处;左右极限在该点不相等时,称为跳跃间断点,如函数y=|x|/x在x=0处。

几种常见类型:

可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。

跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。

无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)