函数的什么点叫间断点?有几类间断点?
一、第一类间断点:左右极限存在。
当左右极限相等,则称为可去间断点;左右极限不等,则称为跳跃间断点。
设Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。
又如果:
1、f(x-)=f(x+)≠f(x),或f(x)无意义,则称Xo为f(x)的可去间断点。
2、f(x-)≠f(x+),则称Xo为f(x)的跳跃间断点。
二、第二类间断点:左右极限至少有一个不存在。
如果有一个极限趋于无穷大,则称为无穷间断点;否则称为振荡间断点。
第二类间断点是指函数的左右极限至少有一个不存在。第二类间断点有非常多种,如无穷间断点,振荡间断点,单侧间断点,狄利克雷函数间断点等等。
第二类间断点:函数的左右极限至少有一个不存在。
1、若函数在x=Xo处的左右极限至少有一个无穷不存在,则称x=Xo为f(x)的无穷间断点。例y=tanx,x=π/2。
2、若函数在x=Xo处的左右极限至少有一个振荡不存在,则称x=Xo为f(x)的振荡间断点。例y=sin(1/x),x=0。
扩展资料
函数间断点的判定:
1、求函数的定义域,找出分割定义域为定义区间的分割点与分段函数的分界点xk;
2、对xk求函数的左右极限,由左右极限的存在性及相关的极限值与变化趋势,确定间断点类型。
3、间断点存在的位置为分段函数的分界点,或者函数定义区间的分割点。没有定义的点构成区间则不为函数的间断点,为函数没有定义的区间。
百度百科-第一类间断点
百度百科-第二类间断点
跳跃间断点和可去间断点有什么区别?
A)一点的两边(从数轴上看就是差为大于0的方向和小于0的方向)距离无限小的范围内存在另外的点;
B)按函数关系(或方程定义)不存在,通过特别定义 可使该点连续的点;
如:y=(x^2-1)/(x-1) 中 点(1 ,2)即为可去间断点。
C)函数以阶跃方式给出,阶跃的边界处的点;
如:y=1 x∈(-∞,0]
-1 x∈(0,+∞) 中,x=0处的间断点即为阶跃间断点。
D)间断点在无穷远处。如: y=1/x
可去间断点和跳跃间断点属于第一类间断点。具体区别如下:
1、从定义理解:可去间断点存在左右极限且相等,跳跃间断点存在左右极限但不相等。
2、从图像理解:可去间断点左右极限应趋向于一处,跳跃间断点图像趋向于两处。
在第一类间断点中,有两种情况,左右极限存在是前提。左右极限相等,但不等于该点函数值f(x0)或者该点无定义时,称为可去间断点,如函数y=(x^2-1)/(x-1)在点x=1处;左右极限在该点不相等时,称为跳跃间断点,如函数y=|x|/x在x=0处。
几种常见类型:
可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!