数学中什么是边角边.角角边.它们的区别是什么.具体点
这是证明三角形全等的简略语。边角边是两个三角形的两组对应边 和这个两组对应边的夹角相等,则这两个三角形全等。角角边是指两组对应角相等
和这两个角的夹边相等,则这两个三角形全等。区别是一个是两个边和其夹角相等,一个是两个角和其夹边相等。不过都是证明三角形全等的常用方法。
三角形的边和角各有哪些特征
角的大小与边的长短无关,与两条边交叉的大小有关。
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、零角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
1、锐角(acute angle):大于0°,小于90°的角叫做锐角。?
2、直角(right angle):等于90°的角叫做直角。
3、钝角(obtuse angle):大于90°而小于180°的角叫做钝角。
角的相关概念
1、余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
2、对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
3、邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。
三角形的三条边特点:三角形任意两边之和大于第三边,任意两边只差小于第三边。
三角形边的性质:
在平面上三角形的内角和等于180°(内角和定理);在平面上三角形的外角和等于360°(外角和定理);在平面上三角形的外角等于与其不相邻的两个内角之和;一个三角形的三个内角中最少有两个锐角;在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!