gpu和cpu的区别是什么?
gpu和cpu的区别:
1、作用不同:CPU是指中央处理器,他的作用偏向于调度、协调、管理,当然也有一定的计算能力。GPU是指图像处理器,他的作用主要在图像处理及大型矩阵运算方面,比如学习算法等等。
2、结构不同:CPU的结构可以大致分为运算逻辑部件、寄存器部件和控制部件等。GPU,是一块高度集成的芯片,其中包含了图形处理所必须的所有元件
3、CPU是主动运行的,从手机开启开始就一直在运行,在熄屏状态CPU也在运行。而GPU是被动运行的,在CPU指派了任务之后才会开始工作,任务完成后又将沉寂等待下一个任务。
扩展资料
应用
目前智能手机屏幕越来越大,系统越来越华丽,游戏特效越来越眩目,传统手机纯CPU处理的方式已经完全不能满足现今智能手机发展的需要了。
以前的智能机,其实都是不带显示核心的,所有的软件、游戏都是由CPU进行处理,呈现在屏幕上。但是CPU的图形处理能力很低很低,这也导致了传统的智能手机玩稍微大一点的游戏往往力不从心,大型3D游戏更是成为了奢望。
随着近几年智能机的高速发展,3D加速芯片的引入为智能机的娱乐性注入了强大的生命力。有了3D加速芯片,我们可以流畅地运行各种3D游戏和3D应用程序,体验到前所未有的感觉。
早期的3D加速芯片功能比较单一,性能也比较低,仅仅只为3D程序提供一定的辅助处理作用。而随着科技的发展,现在的3D加速芯片早已演化成真正意义上的GPU(Graphic Processing Unit,图形处理器),已经不只是传统的3D加速器。
GPU不仅仅是负责必要的3D处理,准确地说,它将所有图形显示功能从CPU那里都接管了过来,并且还提供了视频播放、视频录制和照相时的辅助处理,使得CPU被大大解放,可以专心地处理纯指令,而不再需要去负责繁重的图形处理任务了。
系统的3D性能得到极大的提升。所以,手机GPU的诞生,是移动市场的一次大革命。
百度百科——CPU
百度百科——GPU
1、深度学习用cpu训练和用gpu训练的区别
(1)CPU主要用于串行运算;而GPU则是大规模并行运算。由于深度学习中样本量巨大,参数量也很大,所以GPU的作用就是加速网络运算。
(2)CPU算神经网络也是可以的,算出来的神经网络放到实际应用中效果也很好,只不过速度会很慢罢了。而目前GPU运算主要集中在矩阵乘法和卷积上,其他的逻辑运算速度并没有CPU快。
2、深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。
使用神经网络训练,一个最大的问题就是训练速度的问题,特别是对于深度学习而言,过多的参数会消耗很多的时间,在神经网络训练过程中,运算最多的是关于矩阵的运算,这个时候就正好用到了GPU,GPU本来是用来处理图形的,但是因为其处理矩阵计算的高效性就运用到了深度学习之中。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!