百科狗-知识改变命运!
--

赋范向量空间的距离计算和度量空间的距离计算有什么区别

百变鹏仔1年前 (2023-12-17)阅读数 5#综合百科
文章标签向量空间

赋范向量空间中有线性结构。度量空间没有。

两者中都定义了距离。但赋范向量空间中的距离是由范数诱导出来的,而一般度量空间没有。

当你给出 (1,2) y(3,4) 这样的坐标时就意味着空间具有线性结构。 即使如此,仍可以在空间上定义各种不同的距离。

赋范向量空间的距离可以通过正交单位基的投影计算。 而一般度量空间,只能根据定义,具体情况具体分析啦。

范数是把一个事物映射到非负实数,且满足非负性、齐次性、三角不等式,符合以上定义的都可以称之为范数。所以范数的具体形式有很多种(由内积定义可以导出范数,范数还也可以有其他定义,或其他方式导出),要理解矩阵的算子范数,首先要理解向量范数的内涵。

范数理论是矩阵分析的基础,度量向量之间的距离、求极限等都会用到范数,范数还在机器学习、模式识别领域有着广泛的应用。

特点:

赋范向量空间的距离计算和度量空间的距离计算有什么区别

L0范数与L1范数都可以实现稀疏,而L1范数比L0具有更好的优化求解特性而被广泛使用。 L0范数本身是特征选择的最直接的方案,但因为之前说到的理由,其不可分,且很难优化,因此实际应用中我们使用L1来得到L0的最优凸近似。

总结一下上两段的结论就是:L1范数和L0范数可以实现稀疏,L1因为拥有比L0更好的优化求解特性而被广泛应用。

从学习理论的角度来说,L2范数可以防止过拟合,提升模型的泛化能力。从优化或者数值计算的角度来说,L2范数有助于处理condition number不好的情况下矩阵求逆很困难的问题。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)