什么叫满射,什么叫单射,什么叫双射,最好每个举下例子,不然看不懂
如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应,那这个映射就叫做满射。
设f是由集合A到集合B的映射,如果所有x,y∈A,且x≠y,都有f(x)≠f(y),则称f为由A到B的单射。
既是单射又是满射的映射称为双射,亦称“一一映射”。
假设存在关于x的函数:y=2x+3,对于任何x∈R及y∈R,由于y是x的线性函数,因此对于任何x都有唯一确定的y与其对应。又通过整理可以得到x=(y-3)/2,因此对于任何y,也有唯一确定的x与其对应。这样,在y=2x+3在x∈R、y∈R的域中就是一个双射函数。
扩展资料
在数学里,单射函数为一函数,其将不同的引数连接至不同的值上。更精确地说,函数f被称为是单射时,对每一值域内的y,存在至多一个定义域内的x使得f(x)=y。
另一种说法为,f为单射,当f(a)=f(b),则a=b(若a≠b,则f(a)≠f(b)),其中a、b属于定义域。
双射(Bijection)的原理是一组关系,在判别某一种想法在应用能否双向的找到某一唯一对应的事物,理论上通常要判断这种想法是否满足双射的关系。
因为具体的实施这一想法的途径是并不知道的,所以需要抽象出他们的关系,找到这个双射,如果找不到,并且验证这个双射不存在,那么想法是不可能实现的。
百度百科-满射
百度百科-单射
百度百科-双射
传统在某一变化过程中有两个变量x和y,对于x的每一个确定的值,y都有唯一确定的值与它对应,则y与x有函数关系。一般用
表示。其中x叫做自变量,y叫做因变量。经典在某个坐标变化过程中,如果有两个变量x和y,对每一个给定的x值,y都有唯一确定的值与它对应,确定y=x的函数。x=自变量,y作为x的因变量。另外,若对于每一个给定的y值,都有X与其对应。现代一般地,给定非空数集A,B,按照某个对应法则f,使得A中任一元素x,都有B中唯一确定的y与之对应,那么从集合A到集合B的这个对应,叫做从集合A到集合B的
一个
函数。
记作:x→y=f(x),x∈A.集合A叫做函数的定义域,记为D,集合{y∣y=f(x),x∈A}叫做值域,记为C。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),x∈D.若省略定义域,则指使函数有意义的集合。映射一般地,给定非空数集A,B,从集合A到集合B的一个映射,叫做从集合A到集合B的
一个
函数。
向量函数
:
自变量是向量的函数叫向量函数
对应、映射、函数三者的重要关系:
函数是数集上的映射,映射是特指的对应。即:函数包含于映射包含于对应编程函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。大多数编程语言构建函数的方法里都含有Function关键字(或称保留字)。编辑本段简介首先要理解,函数是发生在非空
数集
之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止一个。最后,要重点理解函数的三要素。
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图象,表格及其他形式表示。概念在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。映射定义设A和B是两个
非空
集合,如果按照某种对应关系f,对于集合A中的
任何一个
元素a,在集合B中都
存在唯一
的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的
映射
(Mapping),记作f:A→B。其中,b称为a在映射f下的
象
,记作:b=f(a);
a称为b关于映射f的
原象。
集合A中所有元素的象的集合记作f(A)。则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象)几何含义函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图象与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。集合论如果X到Y的二元关系f:X×Y,对于每个x∈X,都有唯一的y∈Y,使得∈f,则称f为X到Y的函数,记做:f:X→Y。当X=X1×…×Xn时,称f为n元函数。其特点:值域和定义域重合单值性:取区间任意两变量x1,x2,且x1
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!