百科狗-知识改变命运!
--

耳机12mm和9mm的区别

小肉包1年前 (2023-12-17)阅读数 5#综合百科
文章标签耳机单元

耳机单元大小不样,一般来说越大越好。

耳机的发声部分就是耳机的单元,因为发声装置构造的不同,因此耳机单元种类分为动圈耳机、动铁耳机以及静电耳机等。动圈耳机与动铁耳机相比,动铁耳机多是入耳式的,头戴式的也是由多个单元组成,并且动铁耳机价格也很昂贵,因此市场上动圈耳机非常的常见。

就动圈耳机来说,在其他条件相同的条件下,耳机单元尺寸越大,它的声场会越大,给用户带来更真实的临场感。因为,腔体空间大,气势就越足,频响范围就广。而且振膜面积大,低频的震动也能很好的被表现出来。

动圈式耳机结构示意图

但是,大的耳机单元就很难被驱动。其实举一个例子就很好理解,例如鼓,鼓面越大,它的气势就越足,然而它却需要更大的力道才能和小鼓产生相同的音量。耳机单元小就很容易驱动,而且就像小鼓一样击打之后,在同等力道驱动下它的声音非常清脆。

在其他条件相同的条件下,耳机单元越大,它的潜力就越大,解析力有很明显的优势,音乐润色明显。但是,腔体一旦增大,对耳机腔体内部细节就要求很高,并且携带也非常的不方便。因此,并不能说是耳机单元越大越好,或者是越小越好。

单元尺寸其实是个比较纠结的问题,是一个需要平衡的参数。

理论上,相同振幅下,单元尺寸越大同一时间内推动的空气体积就越多,就能获得更大的声压,声音也会有更好的动态和气势。

但是单元大了振膜的刚性又成问题,在高频振动下会产生分割震动,带来严重的失真,很难把高频表现做好。索尼的Z7一代就是典型的例子。

单元太大还有个问题,振膜和音圈重量增加,运动惯性过大,需要更大的力量才能自如运动,对磁铁和前端驱动性都是考验,很容易造成瞬态的翻车。

什么是3单元耳塞?1单元和2单元呢?这个单元要怎么理解? 和耳麦有什么区别吗?对比起来那个音质好?

如今,随着人们大众生活水平的提高,随身的耳机早已不稀奇,无论是在地铁公交还是食堂教室,处处都是塞着耳机听音乐的人,而数码电子类产品整体行业的发展,又进一步的导致了其更高的需求。不只是简单的听音,耳机的声音品质的成了一些用户的关注点,入门级的耳塞产品也往往无法满足如今人们对于高音质的追求了。因此越来越多的人因此了解了HIFI和发烧的种种概念,因此,小马我在此做一个很小白的科普,各位大佬们轻调戏,多批评指正。

说到耳机,最核心的东西自然是其声音,而说到声音,就不得不说到决定其声音的发声单元,它可以说是决定一副耳机好坏的最重要的部件之一,虽然说一些调音和其他的元件能改变声音的取向,然而单元的素质和能力是却是一副耳机的上限。

耳机的单元的专业性的术语叫做"drive"。在不同的频响里一般可以将其划分为低、中、高频单元,它们之间各自有自己的的频响范围。不同的单元之间分的越细,声音的解析度也就越高越细腻。普通的入耳式耳机的单元一般有一到四个个不等。单元越多,需要的工艺和设计水平也就越高,因而价格也会越来越高。虽然说奉为经典的许多单单元的耳机也有很棒的声音,例如常说的“大四”Shure E4C和"小四"音美特ER4。但不得不提的是,现今的高端耳塞市场,有一种“堆单元之风”,比较常见的塞子,基本上都装有三四个单元,而这些耳塞的价格也基本都在两千以上。例如Shure se535,Westone W4R等。而作为高端奢侈品牌的JH Audio,它的旗下的Layla耳塞的单元数更是高达12个,当然也售价不菲(约一万六),作为2015年旗舰产品,Layla的高、中、低频各由4个单元负责,因此两个耳塞就有了多达24个单元,不得不说,这就对各个频段之间的衔接混合和外形设计有了很高的工艺需求,若没有深厚的功底,是断然没法办法做出好听的声音的 。

说回来谈到单元,一般常见的耳机单元的分为以下三类——动圈单元、动铁单元和静电单元。

动圈,又可以称作Dynamic。目前大多数的耳机耳塞使用的都是动圈单元,从十块一条的天桥Beats,到万元级的高端耳机都能够看到动圈单元的身影。尤其是开放式耳机和半开放式的耳机,基本上使用的都是动圈单元。因此,动圈耳机可以说是目前市面上占主流地位的耳机(大概60%以上),其原因在于,动圈式单元是一种现今技术相对比较成熟了的喇叭结构设计,除了应用在耳机产品上以外,各种喇叭和扬声器的单元也都采用了相似的设计,应用及其广泛。

动圈的工作原理类似于电动扬声器,驱动单元也类似小型的动圈扬声器,由处在永磁场中的缠绕成的圆柱体状的漆包线圈与振膜相连,线圈在信号电流驱动下带动振膜振动,振膜震动产生声音。

通俗来说,它的基本原理就是我们中学物理学过的,闭合线圈在磁场中,磁通量的变化会有电流产生。电流经过“线圈”产生磁场,而磁场和位于底部的永磁材料相互作用,推动薄膜的振动,就产生声音。单元的振膜是连接在“线圈”上,跟随着一起同运动的,因而可以震动空气,传播声音,实现由电转声的过程。

之所以称之为动圈,实际上是一种形象的称呼。振动是产生声音的根本原因,那么如果要产生声音,就必须要有振动源的存在,耳机内部的薄膜即振动源,又因为薄膜上附有导线圈,导线圈和薄膜整体作为振动源振动,故称之为动圈。

既然动圈的核心部件是薄膜和线圈,那么和这些相关的一些参数也成为了耳机好坏的评价标准了。比如,电阻率(阻抗),灵敏度,响应频率段等。而对振膜的设计要求则是质量越轻、刚性越好者为佳。

以下就是一般的单元以及振膜的结构和原理图。

动圈用于耳机上最早出现于1937年。大多数的观点是,拜亚动力出品了世界上第一副动圈耳机,这从拜亚动力这个名字就能看出来,beyerdynamic,dynamic就是动圈的意思。

我们平时使用的耳机基本都是动圈单元,可见动圈技术现今已经能比较成熟,10元一条的价格也能告诉我们,低端动圈耳机的成本并不高。而动铁单元相对来说成本明显要高一些,即使是入门级动铁产品,价格至少也在三四百。当然,贵的动圈耳机自然也有,例如森海塞尔的现今的旗舰耳塞IE800,售价6000+

动圈耳机的优点在于,它的声音更加接近于自然的声音,也许动圈没有像动铁耳塞一样精准漂亮的高中低三频,解析人声也不如动铁,但是高端动圈带来的高低两个频段的泛音是动铁无法做到的。动圈的低频和残响都是动铁的短板。你会发现,听多了动圈就会觉得动铁低频残。声场窄。要说厚实中正,气势庞大的氛围感和包围感,还是大单元动圈耳机的绝对强项。

谈完了最普遍的动圈,我们来谈谈所谓的动铁。动铁耳机的铁指的是,利用了电磁铁产生交变磁场,其关键的振动部分是一个铁片悬浮在电磁铁前方,信号经过电磁铁的时候会使电磁铁磁场变化,从而使铁片振动发声的耳机。其正式准确的叫法应该是“平衡电枢”,索尼在当时就推出了很多“平衡电枢”的耳机,例如其著名的“XBA”系列。

在发声过程上,动铁耳塞和动圈其实是基本类似的,都是靠线圈在永磁场中的振动而发声。而两者之间最大的区别在于发声单元的构造原理和位置有所不同。动铁耳塞内部,音圈是绕在一个位于永磁场的中央被称为“平衡衔铁”的精密铁片上。这块铁片在磁力的作用下带动振膜发声。动圈是直接带动振膜,而动铁是通过一个结构精密的连接棒传导到一个微型振膜的中心点,从而产生振动并发声。

就耳机单元而论,传统的动圈耳塞无法将整个发音单元放入耳内,而动铁式由于单元体积小得多,所以可以比较容易的放入耳道。能够有效地降低入耳部分面积,因此声音的效果也会更加的贴合,更加具有表现力。由于耳道的几何结构要比耳廓简单的多,并且动铁耳塞使用的相对柔软的硅胶套很好的贴合了耳道的类圆形,动铁耳机就有了良好的隔音及防漏音效果。反观动圈,它的单元的面积较大,并且在发声的过程中需要比较多的的空间参与振动(所以动圈耳机都有透气孔),也无法较好的控制漏音现象;而动铁就可以有效降低入耳部分的面积,并且可以放入更深的耳道部分。因而动铁耳机在隔音效果上也可以说是完胜动圈耳机。

但是,这种入耳式的构造也让动铁耳机只能做成封闭式,也是有利有弊吧。就像上文提到的,它还可以设计成多单元的耳机,从单单元到12单元,市面上的多单元动铁如今已层出不穷。总的来说,这类耳机都拥有很高的灵敏度、瞬态表现和解析等特点,对音乐的动态、瞬间细节表现、声音密度上都远胜于动圈耳塞。

单单从声音方面来说的话,动铁跟动圈耳塞之前还是有着很大的区别的,比如动铁单元的结构几乎是个密闭的容器,仅需要很小的电流就可以驱动它,所以灵敏度方面也是动铁耳机更占优势。解析力一直是动铁耳机很好的优势,对于声音细节的回放方面表现优异。而普遍动圈式结构耳机在细节的掌控上并没有那么出色了。

另外,动圈耳机的单元的振动膜片一般都是通过胶水与导线圈相互粘合的,因此这里面受到的影响因素会比较多,每个单元也多多少少会存在一些个体上的差异,而且动圈单元会受周围环境的温度和湿度影响,频响曲线可能会出现一些人耳可听的变化,会对听感有影响。而动铁单元都是采用金属材料,并通过高精密的模具制造而成,其精密度和制造工艺都更复杂,再加上耳塞的密封性设计,使得动铁耳机的频响曲线和整体声音素质表现都更加稳定;在听感上也不会产生变化。

由于隔音的缘故,动铁耳机比较有助于保护听力。并且极高的灵敏度使很小的音量也可以有不错的表现,动铁单元广泛用于医疗、保健、航空、军事等领域。这其中最常见的就是各类助听器了。

不过动铁自然也有其劣势,受限于体积和密封式的设计,动铁耳塞在声场方面还是远远无法达到开放式动圈耳机的标准。另外,让人诟病的还有动铁耳机的铁味,如何形容动铁耳机的铁味,可以说是机械的、干净的、或者没有太多感情的,举个不太恰当的例子,动铁的鼓音都是“梆梆梆”的,让人感觉并不真实,而相比之下,动圈真实的多,也就是之前说的,更加接近自然。

简单总结下来就是,动铁的声音凌厉,迅速,干净。动圈饱满,丰富,厚实。动铁听的是中高频, 听的是素质, 动圈听的是中低频, 听的是听感和气势,。

下图展示的就是动铁单元和耳机的构造

说到这里,大概会有人想问说,有没有办法结合动圈和动铁的特点和优势的耳机呢,答案自然是肯定的。现今,圈铁结合的耳机俨然已成为各大HIFI厂商所追逐的热点,其中最具有代表性的自然是大名鼎鼎的AKG K3003,K3这种动铁+动圈的结合既保证动圈的乐感氛围,也保证了动铁的细腻解析,如果不考虑其高昂的价格的话,可以说是一种比较理想的的解决方案。

最后说到静电单元,对于静电耳机,可能很多人闻所未闻,对于一般人来说,大概连动铁耳机都不了解,更别说静电了。

其实,静电式耳机是现今各种耳机中,工作原理最独树一格的,它的动机其实很单纯,为的只是要避免传统振膜因物理极限而容易失真的缺点,所以他放弃了以线圈与磁针推动振膜的惯用做法,希望能寻找让整张振膜平均且完整的受力方式,静电耳机利用外接的升压器,提供一个极高的电压(达到近600V),导通于以“真空金属蒸镀”的特殊振膜上,使振膜上固定充满正电荷,再将外来的声音信号,通过一个反向器后,分别输入到两侧的固定电极上,借着电荷之间的相互排斥相吸,来产生对振膜拉扯与推动的力量,这样的好处是振膜受力非常均匀,加上与极板之间的距离非常接近,任何微小的信号都能转化为驱动力,因而非常灵敏。此外,在振膜材质上也能有更多的选择性,例如高分子聚合物振膜,不仅厚度极薄,质量也极轻,对耳机性能有着较大提升。

系统的说,静电单元的原理是其振膜处于变化的电场中,由高直流电压极化,静电场发生变化,驱动振膜振动。单极化所需的电能由交流电转化。振膜悬挂在由两块固定的金属板(定子)形成的静电场中,当音频信号加载到定子上时,定子驱动振膜,在电场力的驱动下带动振膜发声。

静电耳机必须使用特殊的放大器将音频信号转化为数百伏的电压信号,用变压器连接到功率放大器的输出端也可以驱动静电耳机。因而其价格昂贵,并且不易于驱动,所能到达的声压级也没有动圈式耳机大,但它的反应速度快,能够重放各种微小的细节,失真极低,素质非常高。

下图就是动圈动铁以及静电的发声原理的对比

静电耳机由于其技术成本高,因而生产的厂家较少。做静电耳机最主要的就是STAX和高斯了,其中又以STAX为典型代表。

STAX是日本著名的静电耳机厂商,这个厂商人员只有40多人,但就是这40多人撑起了耳机界的一个奇迹,就像Grado在美帝的小作坊工厂一样。但是STAX是唯一专做并全线产品为静电耳机的厂商。2011年底,STAX的100%股权被国内的厂商漫步者以当时汇率折合人民币976.93万元收购,并作为漫步者旗下的子品牌。STAX可以说是耳机界的一朵奇葩,在追求极致上一点不差于欧美公司,旗下产品几乎各个都是不得了的。STAX现今的旗舰是 SR-009,售价目前大概在四万左右,这还不是一整套西装的价格。与传统动圈耳机不同的是,静电耳机需要专门的耳机放大器与之匹配,只有一个耳机想让它出声的话断然是没有可能的。但是耳放售价也并不低廉,因而,常说的一句话“静电耳机是富人们的玩具”也并不过分。

上图为STAX 009

静电耳机,还有一个典型的例子,就是常说的大奥,森海塞尔奥菲斯静电系列耳机。二十万,怕不怕。全球限量300套。而每套高达20万元人民币的价格足以让烧友购买一套高端的HiFi音响,而即使如此高价,森海塞尔奥菲斯仍然是有价无市,可见它的流行程度。下图为森海塞尔 奥菲斯。

耳机12mm和9mm的区别

以上。(未完)

就是指发声单元,普通耳机就一个足够了。而某些价格不菲的高端耳塞,为了得到更好的效果,才用多个发声单元。2单元的话一般是一个负责低频、另一个中高频,3单元的话可能再加一个低频或高频单元,看耳机的设计风格了。有的高端定制还有8单元。。一般多单元耳机都是动铁,或者动圈耳塞里加个动铁单元,因为动铁单元比较小,而动圈的振膜越大效果越好,所以一般只有一个。

高端耳塞还是耳塞啊,都可以用的

耳机多接了个麦克风,就是耳机麦克风,简称耳麦。。有的高端耳机也会带麦,比如新版A8。但一般高端货都是专业的,加个麦多条线路会影响音质,所以~~

音质和价格成正比,多单元动铁1000以下都是假的,别被忽悠了

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)