百科狗-知识改变命运!
--

模糊Hash跟局部敏感Hash的区别?后者是前者的一种?二者的经典算法有哪些

泡在奶味里1年前 (2023-12-17)阅读数 7#综合百科
文章标签算法函数

模糊Hash跟局部敏感Hash的区别?后者是前者的一种?二者的经典算法有哪些

Hash,一般翻译做“散列”,也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。

关键特性:单向性 抗冲突性 映射分布均匀性和差分分布均匀性

而MD5可以说是目前应用最广泛的Hash算法

JH

EM(Expectation-Maximum)算法也称期望最大化算法,它是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussian mixture model,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。

EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),一轮轮迭代更新隐含数据和模型分布参数,直到收敛,即得到我们需要的模型参数。

1. EM算法推导过程

补充知识:Jensen不等式:

如果f是凸函数,函数的期望 大于等于 期望的函数。当且仅当下式中X是常量时,该式取等号。(应用于凹函数时,不等号方向相反)

2. EM算法流程

3. EM算法的其他问题

上面介绍的传统EM算法对初始值敏感,聚类结果随不同的初始值而波动较大。总的来说,EM算法收敛的优劣很大程度上取决于其初始参数。

EM算法可以保证收敛到一个稳定点,即EM算法是一定收敛的。

EM算法可以保证收敛到一个稳定点,但是却不能保证收敛到全局的极大值点,因此它是局部最优的算法,当然,如果我们的优化目标是凸的,则EM算法可以保证收敛到全局最大值,这点和梯度下降法这样的迭代算法相同。

EM算法的简单实例: https://zhuanlan.zhihu.com/p/40991784

参考:

https://zhuanlan.zhihu.com/p/40991784

https://blog.csdn.net/u011067360/article/details/24368085

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)