百科狗-知识改变命运!
--

《SPSS for Windows ——在心理学与教育学中的应用》、《心理统计学与SPSS应用》哪本书好?

泡在奶味里1年前 (2023-12-17)阅读数 3#综合百科
文章标签功能数据

自学的话,《SPSS for Windows ——在心理学与教育学中的应用》 张奇 主编 北京大学出版社

这本比较好吧,写论文时需要用到的 描述统计、t检验、方差分析、相关分析、回归分析、非参数检验、主成分因子分析与信度分析、聚类分析和统计图 等等,都比较好理解,侧重应用方面的。

logistic回归用spss做最佳。spss和spss modeler的区别如下:

1、spss modeler是数据挖掘,spss是统计分析:spss是一款用于处理常见统计问题的软件,功能是比较齐全的。spss modeler是专门用于做数据挖掘的软件,包含各种数据挖掘算法,可以和其他数据库软件比较好地兼容、连接。

2、直接区别:两者在处理数据的量上有区别,spss的处理数据量有限,而spss modeler处理数据的量可以是海量,也就是现在所说的大数据。

3、本质区别:主要是功能上的,spss modeler包括有统计分析的部分,也有机器学习和人工智能的部分,而spss主要就是统计分析,是以统计学的理论为主的。spss modeler更侧重挖掘潜在的知识,为业务做指导,spss侧重在统计分析功能的应用。

扩展资料:

spss和spss modeler的功能介绍:

1、结果报告:从10版起,对数据和结果的图表呈现功能一直是SPSS改进的重点。在16版中,SPSS推出了全新的常规图功能,报表功能也达到了比较完善的地步。13版将针对使用中出现的一些问题,以及用户的需求对图表功能作进一步的改善。

2、统计建模:Complex Samples是12版中新增的模块,用于实现复杂抽样的设计方案,以及对相应的数据进行描述。但当时并未提供统计建模功能。在13版中,这将会有很大的改观。

一般线形模型将会被完整地引入复杂抽样模块中,以实现对复杂抽样研究中各种连续性变量的建模预测功能,例如对市场调研中的客户满意度数据进行建模。

对于分类数据,Logistic回归则将会被系统的引入。这样,对于一个任意复杂的抽样研究,如多阶段分层整群抽样,或者更复杂的PPS抽样,研究者都可以在该模块中轻松的实现从抽样设计、统计描述到复杂统计建模以发现影响因素的整个分析过程。

方差分析模型、线形回归模型、Logistic回归模型等复杂的统计模型都可以加以使用,而操作方式将会和完全随机抽样数据的分析操作没有什么差别。可以预见,该模块的推出将会大大促进国内对复杂抽样时统计推断模型的正确应用。

3、模块:这个模块实际上就是将以前单独发行的SPSS AnswerTree软件整合进了SPSS平台。笔者几年前在自己的网站上介绍SPSS 11的新功能时,曾经很尖锐地指出SPSS的产品线过于分散。

《SPSS for Windows ——在心理学与教育学中的应用》、《心理统计学与SPSS应用》哪本书好?

应当把各种功能较单一的小软件,如AnswerTree、Sample Power等整合到SPSS等几个平台上去。看来SPSS公司也意识到了这一点,而AnswerTree就是在此背景下第一个被彻底整合的产品。

4、兼容性:随着自身产品线的不断完善,SPSS公司的产品体系已经日益完整,而不同产品间的互补和兼容性也在不断加以改进。

百度百科—spss

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)