百科狗-知识改变命运!
--

什么是实对称矩阵

是丫丫呀1年前 (2023-12-17)阅读数 7#综合百科
文章标签矩阵对称

问题一:什么是实对称矩阵 线性代数里的内容,即矩阵A的转置等于其本身的矩阵(AT = A) 性质:(1)A的特征值为实数,且其特征向量为实向量(2)A的不同特征值对应的特征向量必定正交(3)A一定有n个线性无关的特征向量,从而A相似于对角矩阵

问题二:怎么判断一个矩阵是实对称矩阵 实对称矩阵的定义需要偿足两个条件:

是对称矩阵。

是实数矩阵

对称矩阵很好判断,即矩阵转置后与原矩阵相等。

因此不难看出其中一个必要条件是矩阵必须满足是n阶方阵。

实数矩阵,也容易判断,矩阵的共轭矩阵是其自身。

结合上述条件,也可以得到这样的等价判断条件:

实对称矩阵?共轭转置矩阵(又称埃尔米 *** 轭转置)是其自身。

问题三:对称矩阵的定义是什么? A的转置等于A的矩阵就叫转置矩阵。

问题四:实对称矩阵和对称矩阵有什么区别吗? 当然有,实对称矩阵的元素都是实数,对称矩阵的元素可以是搐数

1 1 2

1 2 3

2 3 2*根号2

这是实对称矩阵

1 2 i

2 1+i 2

i 2 根号3

这是对称矩阵,但不是实对称矩阵

问题五:什么叫对称矩阵 定义

元素以主对角线为对称轴对应相等的矩阵

特性

1.对于任何方形矩阵X,X+XT是对称矩阵。

2.A为方形矩阵是A为对称矩阵的必要条件。

3.对角矩阵都是对称矩阵。

两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

用表示上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈

,( A(x) , Y )=( X, A(Y))。[2]

任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT)

每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

若对称矩阵A的每个元素均为实数,A是Hermite矩阵。

一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。

如果X是对称矩阵,那么AXAT也是对称矩阵.

n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。

所谓对称变换,即对任意α、 β∈V,都有(σ(α),β)=(α,σ(β))。投影变换和镜像变换都是对称变换。

什么是实对称矩阵

问题六:对称矩阵与实对称矩阵有什么区别 10分 对称矩阵只说明A^T=A

没说明矩阵中的元素是实数,矩阵中的元素不仅可以是实数,也可以是虚数,甚至元素恭身就是一个矩阵或其它更一般的数学对象

实对称矩阵就说明了矩阵中的元素要是实数

问题七:正交矩阵与实对称矩阵有什么区别? 你好!正交矩阵是满足AA^T=E,而对称矩阵是满足A=A^T,定义完全不同的。经济数学团队帮你解答,请及时采纳。谢谢!

问题八:什么叫非实对称矩阵 意思就是一个矩阵不是实对称矩阵,换句话说矩阵至少有如下两条性质的一条:

矩阵不是实矩阵(可以是复矩阵)

矩阵不是对称阵

我估计你所说的“共轭矩阵”就是所谓的Hermite矩阵。

定义:

如果A(i,j)=A(j,i),那么称A是对称矩阵。

如果A(i,j)=conj(A(j,i)),那么称A是Hermite矩阵。

对于实矩阵而言,对称矩阵和Hermite矩阵是一回事,通常称为(实)对称矩阵。

对于一般的复矩阵而言,复对称矩阵和Hermite矩阵则有非常本质的不同。

Hermite矩阵和实对称矩阵有大量的共同性质,最根本的性质是谱分解定理。而对于复对称矩阵而言,它的谱可以具有任何分布。

但是Hermite矩阵也没有完全继承实对称矩阵的性质,比如任何实矩阵可以分解成两个实对称矩阵的乘积,但是复矩阵不一定能分解成两个Hermite矩阵的乘积,不过一定能分解成两个复对称矩阵的乘积。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)