不同波长的雷达各有什么优缺点
不同波长的雷达各有其优缺点,适用于不同的应用场景。以下是各种波长雷达的优缺点:
1. 厘米波雷达:具有体积小、重量轻、作用距离远、分辨率高等优点,常用于导弹制导、跟踪、遥控和目标测量。但厘米波雷达对隐形飞机无效,因为隐形飞机可以通过吸收、散射和折射雷达波来达到隐形目的。
2. 毫米波雷达:具有体积小、重量轻、分辨率高等优点,且对烟雾、灰尘等环境条件具有很强的穿透能力,常用于导弹制导、跟踪、遥控和目标测量。但毫米波雷达的探测距离比厘米波雷达更近,且更容易受到大气干扰。
3. 红外雷达:具有体积小、重量轻、分辨率高等优点,可以在夜间或恶劣天气条件下工作,常用于导弹制导、跟踪、遥控和目标测量。但红外雷达的探测距离较短,且对某些材料(如铝)的识别能力较差。
4. 激光雷达:具有高精度、高分辨率、抗干扰能力强等优点,常用于地形测量、目标识别等。但激光雷达的探测距离较短,且对雨、雾等环境条件的穿透能力较差。
5. 微波雷达:具有高精度、高分辨率、抗干扰能力强等优点,常用于导弹制导、跟踪、遥控和目标测量。但微波雷达的探测距离较短,且对某些材料(如铝)的识别能力较差。
6. 超长波雷达:具有作用距离远、定位精度不高、信号衰减小等优点,常用于战略警戒和导弹预警。但超长波雷达的分辨率较低,无法识别较小的目标。
7. 长波(米波)雷达:具有较大的作用距离和较高的定位精度,常用于战役级空中警戒和空战引导。米波雷达对隐形飞机也有一定的防御能力。
综上所述,各种波长雷达各有其优缺点,应根据具体应用场景选择合适的雷达。
什么是雷达信号?
随着雷达技术的发展,从20世纪60年代开始,雷达家族出现了一位“多面手”——相控阵雷达。
这种雷达可以同时具备对不同目标进行远程警戒、引导、跟踪和制导等多种功能。它能在30秒钟内对300多个目标进行跟踪。对于像篮球那么大的目标的最大探测距离可达3700千米,可以说是目前雷达技术的尖端。
我们知道,要想让雷达看得远,天线就得做得很大,这样一来,天线转动起来非常缓慢,跟踪快速飞行的洲际导弹就显得力不从心。而相控阵雷达已成功地解决了这个问题。
有一种相控阵雷达,外形像一座30米高的大楼,它的天线就像一面直径为29米的墙,倾斜角为20°。在这面圆形的天线上,排列着分为96组约15360个能发射电磁波的辐射器,分别连着各自的发射机和接收机,就相当于有96部普通雷达组合在一起。
相控阵雷达的96组收发系统由电子计算机统一指挥,谁负责警戒,谁负责跟踪,谁来制导,都有明确分工。这样,它身兼多种功能,而且计算机计算速度快、容量大,在很短时间内就能完成由各种普通雷达配合起来才能完成的任务。
相控阵雷达的天线是固定不动的。它只能看到正面120°方位角范围的目标,看不到背后的目标。为了让它能看到360°范围内的目标,一般靠三面天线阵同时工作或把天线做成圆顶形的。
现代雷达,要求测量目标的作用距离远。增加作用距离的方法之一,就是把雷达发射电磁波的能量加强,这样可以使脉冲功率提高和采用宽一些的脉冲来实现。
我们知道,电的能量是用功率乘上时间来表示的。雷达技术上也是如此,增加发射脉冲能量除了提高发射功率外,还可以使脉冲存在的时间——脉冲宽度宽一些。
但脉冲宽度加宽,又带来了一个问题,就是导致雷达距离分辨力变差。什么是距离分辨力呢?当雷达天线对准目标后,如果在同一方向上有两个目标,比如有两架飞机一前一后地飞行,那么雷达所能识别这两个目标之间的最小距离,就称为距离分辨力。
距离分辨力与脉冲宽度有密切的关系。在雷达显示器上,回波信号的波形与雷达发射脉冲宽度是成比例的。
如果发射脉冲太宽,从第一个目标和第二个目标反射的回波,就会重叠在一起,分不清是两个目标。
如果雷达采用很窄的脉冲,那么就可以分清两个反射回波,而且能测出两架飞机相隔的距离。
在军事防空体系中,对雷达的距离分辨力要求很高。所以脉冲宽度要尽量采用窄一些的,但这样又与增大雷达作用距离相矛盾了。
激光雷达是由微波雷达发展而来的,它们都是向目标发射探测信号,然后通过测量反射信号的到达时间、波束的指向、频率变化等参数来确定目标的距离、方位和速度。只是激光雷达利用激光束来工作,波长比微波要短得多,只有0.4~0.75微米。
由于激光具有许多优点,如它的单色性好,亮度高,方向性强等,使激光雷达比微波雷达更为优越。它的精度高,分辨力强,设备小而轻,有的能显示目标图像,还可以用来测速。随着激光技术水平的不断提高,激光雷达在国防上的应用将会日益广泛。
激光多普勒频移雷达:它是利用多普勒效应原理,利用频率计测定频移来达到测量目的的。因为激光波长极短,在目标相对雷达运动时,频移现象将特别显著,故能精确测定目标的运动情况。
激光测高计:用于从空中测量地面或海面的高度。
人造卫星激光雷达:用于对人造卫星进行测距和跟踪。
激光气象雷达:用以测量云层方位、晴空湍流、流星尘等。
喇曼激光雷达:用以测定大气污染情况和大气中各种物质成分。
障碍回避雷达:可绕过山峰等各种地形障碍来进行探测。
世界上一些国家已经开始研制天基雷达,就是把雷达部置在太空中,居高临下,临视范围非常大,而且安全可靠,它具有波束捷变能力强、分辨率高、识别目标能力强、干扰小等优点。
美国“星球大战”计划,将开发能跟踪运载火箭,区别真假弹头,并且作为天基动能武器火控系统的天基雷达。它采用相控阵技术,工作在毫米波段,能同时跟踪500个目标,并且可以对杀伤效果作出准确评价。例如星载雷达,这种雷达将发射机装在卫星上,而接收机装在大型飞机里,由于雷达功率小,重量轻,只要把回波信号返回到目标附近的飞机上,而飞机不用发射信号,所以雷达获得的目标信息精度高,隐蔽性很好。
现代各种用途的雷达正向数字化、固体化、计算机控制和多基地雷达体制的方向发展。计算机使雷达的操作、维护和使用自动化,并能提高雷达的可靠性,缩短其反应时间;自适应雷达能在环境变化和干扰情况下迅速自动调整,并充分发挥最佳功能;超宽频带、多频率和极化编码技术能提高雷达识别目标的能力和电子对抗能力等。
随着各种芯片的研制成功以及人工智能技术的发展,21世纪的雷达世界将出现百花争艳的盛景。
雷达所起的作用和眼睛相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。 事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的波段不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。
测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。
测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!