鱼类是如何看清楚周围世界的?它的眼睛的结构是什么样的?
鱼的眼睛没有眼睑,它的神经系统也是比较低级的,他的眼睛内没有人的眼睛的复杂的折光系统,他的眼睛能看到东西,只是他是高度近视的,鱼类主要靠自己身体两侧的侧线来感知水流、水温和水流的方向,从而判断自己的运动方向。
鱼虽然属于低等脊椎动物,但眼睛的结构却与人眼相似。所不同的是,人眼的水晶体是扁圆形,可以看到远处的东西;而鱼眼的水晶体却是圆球形,只能看见较近的物像。所有的鱼都是近视眼,它们很少能看到12米以外的物体,这与它们水晶体的弯曲度不能改变有关。不过,鱼虽然近视,但反应却很灵敏。钓鱼的人常常发现这样的事情:当他走到河边,还未来得及放下鱼钩时,鱼却早已察觉,迅速逃避了。原来,鱼在水中虽然看得不远,但却能够通过光线的折射,在水中看到陆地上的物体。由于折射作用,鱼会感觉到陆地上的物体的距离比实际的距离要近得多,位置也比较高,所以人还没靠近水边,它却感到人已出现在它的头顶上了。因此,有经验的钓鱼者通常都是蹲在岸边,使人体与水平面保持最小的角度,这样鱼就看不到人了。一般来说,鱼类的视野比人的要广阔得多,所以不用转身就能看见前后和上面的物体,例如淡水鲑在垂直面上的视野为150度,水平面上的视野为160~170度,而人眼分别为134度和154度。正是由于这个原因,照相机上使用的超广角镜头也被称为鱼眼镜头。
所以鱼应该跟人类一样可以看得到五颜六色的。
鱼的眼睛
从鱼的眼睛和体长的比例来看,鱼眼比其他动物眼睛显得大。那么,鱼的眼睛构造又如何呢?我们可以拿照相机来说明。鱼眼的水晶体相当于照相机的镜头,而眼内视网膜则相当于感光胶卷,物体光线通过水晶体成像于视网膜上而产生视觉。
有的鱼眼睛很小,甚至消失,也有的鱼眼大如望远镜。鱼眼的大小和它日常所接触的光线很有关系。生话于水的上层或中层的鱼,它们都有正常的眼睛,如鲤鱼、鲫鱼、黄鱼等鱼类,而生活在300-1500米深处的鱼类,因这里的光线极弱,一般眼睛都比较大。大眼鲷鱼就是一例。如果深度再增加,光线根本射不到,那么它的眼睛即使有的话,也用不上了。所以它的眼睛就变得很小,甚至全部退化。
人类眼睛的水晶体是扁圆形,可以看到远处的东西。而鱼眼的水晶体是圆球形,只能看见较近的东西,所以它们都是近视眼。就算鱼类有扁圆形的水晶体,也不能看到较长距离。因为人眼的水晶体有弹性,它的表面曲度是可以调节的。当我们看远处的东西时,水晶体就变得扁平些;看近处的东西时,水晶体就变得浑圆些。可是鱼类的水晶体却是固定的球形,其弧度不能调节。
在美洲淡水湖泊里有一种四眼鱼,顾名思义,好象它有四只眼睛,其实它也只有两个眼球,不过因为构造奇特,所以在外表上和功用上都已相当于四只眼睛了。每个水晶体的前面有一片横膜,把原来的一个瞳孔分成上下两个,上面的瞳孔适合于在空中看,下面的瞳孔适合于在水里看。平时,四眼鱼总是在水面上游动,两只眼睛一半露在水面,这样,它不但可以看到水面上的东西,还可以发现掠过水面的昆虫,然后捕捉充饥。
鱼类的眼睛是不是和人的眼睛一样能感觉到颜色,这是一个生物学家们长期争论的问题。下面先看一个有趣的试验。
如果先把比目鱼放在蓝色背景的水池中饲养6个星期,然后再把它移到另一个水池。而这个池子底部一半是蓝色,一半是绿色。,结果发现,这种鱼有88%的时间逗留在蓝色的半边上,相反,如果把比目鱼再放在绿色底色的水池里6个星期,,那么即使再放到另一个有蓝、绿底色的池子里,它也会有85%的时间在绿色那一边。这说明比目鱼能区别蓝色与绿色,而且能对新环境进行选择,同时受到过去习惯的影响。
有人对鲅鱼识色进行了训练。发现鲅鱼也有辨别颜色的能力。
霍金说:我们怎么知道我们感知到的“现实”是真实的?金鱼看见的世界与我们所谓的“现实”不同,但我们怎么能肯定它看到的就不如我们真实?据我们所知,就连我们自己说不定终其一生,也在透过一块扭曲的镜片打量周遭的世界。
金鱼看到的世界为什么跟我们所谓的现实不同呢?因为金鱼的眼睛跟我们的不一样,看到的世界也就不一样。就像用广角镜头,用红外线望远镜看世界一样,镜头内的成像跟我们裸眼看到的世界区别很大。
鱼看到的世界不仅与你看到的不一样,不同种类的鱼儿看到的世界也互不相同。
世界上鱼的种类有33600种,超过了哺乳动物、鸟类、爬行动物和两栖动物全部加起来的总和。其中超过3万种鱼类是硬骨鱼,包括鲨鱼在内的软骨鱼只有1300种。
从高山溪流到深海海沟,从雨林沼泽到极地海洋,无论是垂直高度,还是平面区域,鱼儿生活的范围都远远超过了我们。跟生活环境密切相关,生活在不同环境中的鱼儿拥有不同的眼睛,所见也不同。
鱼眼跟我们的眼睛有什么不同?
结构上,鱼儿的眼睛跟你的很像,不过它们没有眼睑,也没有泪腺。你需要泪水滋润眼球,还会经常眨眼去除眼球表面的细微灰尘。生活在水里的鱼儿不存在这个麻烦,包围住它们的水流时刻在滋润清洗着鱼儿的眼球,它们用不上眨眼和泪水。
1、聚焦
视觉上,鱼儿的视力不如你的视力好。原因是,你在空气中看世界,而鱼在水里看世界。
鱼儿和你能看到世界全凭光线,光线的照射让我们看见了物体。光线在不同的媒介中,传播速度不同。以光在真空中的传播速度为标准,光在空气中的传播速度跟在真空中差不多,但在水里的传播速度要慢,速度只有空气传播速度的四分之三,也就是0.75。当光线从空气进入水里时,因为传播速度不同,会发生折射。折射是当光线穿越不同介质时发生的方向改变,我们把折射率定义为光线在介质中速度比值的倒数。光在空气中没有折射,折射率为1,而光在水中的折射率为1.333(=1/0.75)。折射率越高,光的速度越慢。
你在看物体时,光线经过了两次折射才聚焦到视网膜上,角膜和晶状体是你的聚焦工具。眼球最外层的角膜有圆润的弧度,平行光线从角膜表面进入角膜内部时,发生第一次折射,转折向中心聚集。然后,聚集的光线通过折射率略大于水的晶状体,发生第二次折射,再次聚焦,最后成像落在视网膜上。
简单地说,当你看见光线时,光线先是在空气中传播,而后在含水的眼睛里传播。
上图是人眼聚焦图。光线经过角膜的第一次折射后,聚集起来,然后你通过改变晶状体的形状来精确聚焦。要看清远处的风景,你控制晶状体的肌肉会放松,连接晶状体的悬韧带扩张,拉伸晶状体变平,聚焦远处。要看清近处的字画,睫状肌压缩,悬韧带回收,压迫晶状体变凸,聚焦近处。
鱼儿生活在水里,光线直接在水里传播,进入含水的眼睛,省略了在空气中传播的一次折射。跟你看物体不一样,光线通过鱼儿的角膜时,没有发生折射。鱼儿全靠调节它的晶状体来聚焦,而且鱼儿调节晶状体的方式跟你调节的方式也不一样。
上图是人眼和鱼眼的对比图。你的晶状体是块有弧度的薄片,弹性很好,能压缩拉伸。鱼儿的晶状体是个球,很僵硬,不能改变形状。鱼儿在聚焦时,不会像你一样改变晶状体的形状,鱼儿直接前后移动晶状体的位置来聚焦。要看远处风景时,硬骨鱼收缩控制晶状体的肌肉,把晶状体尽量往后拉,靠近视网膜。不过让鱼儿前后移动晶状体的位置有限,这意味着,晶状体调节受到位置限制的鱼儿看不了太远,它们都是近视眼。
在空气通透,阳光明媚的好天气,你能看到20公里的远方。在水源清澈,光线合适的平静湖泊,视力最好的鱼儿能看到50米的远方,而大多数鱼儿都只能看清方圆10米之内的物体。
鱼儿看不了太远,但是能看清距离很近的东西。你看不清在你鼻子面前3厘米处的虫子,鱼儿就能看清。圆球形的晶状体还给鱼儿带来了长景深的观感,当它聚焦在5米远的地方时,5米之后的物体也能看清楚,就像鱼眼镜头里面的成像一样。不过鱼眼能看清的范围有限,看不清鱼眼镜头里的蓝天白云。另外鱼眼只能看清视野中间的物体形状,视野边缘的物体会变形。
鱼儿没有眼睑,晶状体调节位置有限,加上鱼儿的瞳孔很大,不能缩小(除了鲨鱼,鲨鱼能调节瞳孔大小),影响了它对光线的适应性。你对光线的适应性很强,从黑暗的**院走到阳光下,眯一会儿眼,缩小瞳孔,一分钟就能适应光线变化。可是鱼儿不行,你在黑夜里把客厅的灯打开,鱼缸里的鱼儿会先躲到阴影处,至少要等上30分钟才能适应强光。湖泊里的鱼儿最爱微光,在清晨、傍晚和阴天时,它们更加活泼好动。
虽然鱼儿的视力远不如你,还怕强光,但是它的视野比你的广阔。
2、视野
你的双眼位于前方,有出色的视觉,但你看不到侧边的物体。而鱼儿的眼睛长在脑袋的侧面,左右隔开,每只眼睛能看到侧边180度的范围。在双眼视线重叠的正前方,鱼儿能看清空间距离。
如果你闭上一只眼睛,只用单眼看世界的话,会发现很难确定物体距离你有多远,就连弯腰捡起掉落在地板上的铅笔时,都会错位。只有睁开两只眼睛一起看,才能精确把握距离。就像打羽毛球或乒乓球,如果你两只眼睛的视力差距很大,又没戴眼镜调节的话,会影响接球动作,因为有视差,你不能准确定位球的位置。
鱼儿跟你一样,单眼看到侧边的物体时,不能很好地判断距离远近。只有物体出现在双眼都能看到的正前方,才能把握距离的远近。而在捕食虫子和虾米时,确定位置很关键。鱼儿视野覆盖范围很广,不过也有盲点,它的正后方区域是视线覆盖不到的地方。你徒手捉鱼时,从它的后面下手最为妥当。
鱼儿除了有比你更广阔的视野外,它还能看到你看不见的色彩。
3、色彩
你的视网膜里有2种感光细胞,一种是视杆细胞,用来分辨明暗。另一种是视锥细胞,用来分辨色彩。视锥细胞分3种,感红细胞,感绿细胞,感蓝细胞,分辨不同的色彩。红绿蓝是光的三原色,调配组合后你能看到五颜六色的大千世界。(注:光的三原色跟调色板上红黄蓝的颜料三原色不同。)
大部分的鱼儿眼里的视锥细胞有4种,比你多了一种感知紫外线的细胞。大多数的鱼儿能看到你看不见的紫外线,它们的可视光谱比你的更宽。
上图是生活在珊瑚礁里的2种雀鲷鱼,上方的是安波鱼(ambon damselfishes),下方的是柠檬(lemon damselfishes),长成一模一样的明**,没法区分。但如果一条柠檬鱼进入安波鱼的领地,立刻会被安波鱼驱逐。安波鱼怎样辨认出异族柠檬鱼?昆士兰大学团队用带滤光片的镜头看到了雀鲷鱼的秘密。
上图是带滤光片的镜头拍下的照片,上方是安波鱼,下方是柠檬鱼。滤光片阻挡了其它波长的光,只留下紫外线照射在鱼儿的身上。照片上你可以看到安波鱼和柠檬鱼的脸颊上长着不同的图案,脸颊的复杂图案在紫外线的反射下能看到,你用裸眼看不到,而鱼儿能看到,这是它们独特的防伪标志。
除了紫外线外,有些鱼儿还能看到红外线,偏振光,它们的可视光谱超过人类太多。
上图是能看见紫外线的金鱼眼中的世界,它看到的色彩比你看到的更玄幻。
广袤海洋,从浅水到深水,从热带到极地,不同环境下的鱼儿拥有不同的眼睛,现在来看看剑鱼和鲨鱼的眼睛有什么不同。
剑鱼
剑鱼的血是冷的,但它的眼是热的。
天越冷,你的行动越迟钝。在冬天的冷风中回个微信,手指冻僵了连打字都不利索。水里的鱼儿跟你一样,寒冷会阻碍它们大脑和肌肉的功能,延长反应时间。面对寒冷,以速度取胜的剑鱼,为了保持自己锐利的目光,演化出给眼睛加热的能力。
剑鱼的眼睛周围有个加热器官,把血液加热后提供给眼睛和大脑,让冷血的剑鱼拥有温暖的目光和思维。在只有3℃的冰冷海洋,剑鱼的眼睛温度能提高10℃到15℃。加温的眼睛工作速度比冷血眼睛要快上10倍,追踪猎物不在话下。
冷血的剑鱼,身体温度跟随环境变化。水流带走热量的速度远大于空气,为了单独给眼睛加热,保持温度,剑鱼消耗了不少的能量。在3万多种鱼类中,只有22种鱼类拥有加热眼睛的能力。
鲨鱼
同样是捕猎高手的鲨鱼跟剑鱼一样,也会加热眼睛,此外,鲨鱼还有一种剑鱼比不上的夜视能力。
鲨鱼喜欢在夜间捕食,它们拥有一双透视暗夜的眼睛。
鲨鱼的视网膜后面有层反射膜,叫做绒毡层透明质。光线透过视网膜照射到透明质上,能重新反射到视网膜上,让鲨鱼的夜视能力加倍。猫咪的眼睛里也有这层反射膜,到了夜晚闪闪发光。如果鲨鱼深夜在陆地上行走,你也能看到它们黑夜里发亮的双眼。
真实世界
鱼儿看到的世界跟你看到的不同,哪一个更真实?
无论是鱼儿还是你,看到的世界都是真实的,没有谁比谁更高级。实际上,你跟鱼儿一样,看到的世界只是真实的一部分。除了眼见为实的图像外,还有很多看不见的真实物体同时存在。
从星空到深海,人类一直在探索着看得见和看不见的世界。真实世界像一张巨大的拼图,每一个新发现是拼图的一块单片。一块块的单片积累起来,我们能逐渐拼接成完整的真实世界。
期待有一天,不再像霍金先生说的那样:“透过扭曲的镜片打量世界”,我们能完完整整地看清楚真实世界。
我们的征途是星辰大海,一直在路上,从未改变。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!