二元函数连续、偏导数存在、可微之间有什么关系?
二元函数连续、偏导数存在、可微之间的关系:
书上定义:
可微一定可导,可导一定连续。可导不一定可微,连续不一定可导。
1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。
3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。
4、可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。
判断可导、可微、连续的注意事项:
1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。
2、二元就不满足以上的结论,在二元的情况下:
(1)偏导数存在且连续,函数可微,函数连续。
(2)偏导数不存在,函数不可微,函数不一定连续。
(3)函数可微,偏导数存在,函数连续。
(4)函数不可微,偏导数不一定存在,函数不一定连续。
(5)函数连续,偏导数不一定存在,函数不一定可微。
(6)函数不连续,偏导数不一定存在,函数不可微。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)