百科狗-知识改变命运!
--

方差和平均差的区别是什么?

梵高11个月前 (12-18)阅读数 6#综合百科
文章标签方差平均数

平均差:平均差是表示各个变量值之间差异程度的数值之一。指各个变量值同平均数的离差绝对值的算术平均数。

标准差:是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。

方差:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。

极差:极差又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。是指一组数据内的最大值和最小值之间的差异.

区别:

1、平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的.平均差是反应各标志值与算术平均数之间的平均差异,是各个数据与平均值差值的绝对值的平均数;标准差是离均差平方和平均后的方根,更能反映一个数据集的离散程度。

2、方差是每个数减去平均数的平方的和,标准差是把方差除以我们的关注的事物的个数,方差=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],标准差=方差的算术平方根。

3、平均差是总体所有单位与其算术平均数的离差绝对值的算术平均数。方差是各个数据与其算术平均数的离差平方和的平均数。

联系:极差越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然,方差的算术平方根=标准差。

扩展资料:

方差的统计学意义

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为:

标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。

百度百科——方差

百度百科——极差

方差和平均差的区别是什么?

百度百科——标准差

百度百科——平均差

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)