利用割补法可以把一个平行四边形转化成一个什么
平行四边形转化长方形,如图:
故利用割补法,可以把一个平行四边形转化成一个 长方形,它的面积与平行四边形的面积 相等,它的 长与平行四边形的底相等,它的 宽与平行四边形的高相等.因为它的面积等于 长×宽,所以平行四边形边的面积等于 底×高.
故答案为:长方形,相等,长,宽,长×宽,底×高.
常见的勾股数及几种通式有:
(1)(3,4,5),(6,8,10)……
3n,4n,5n(n是正整数)
(2)(5,12,13),(7,24,25),(9,40,41)……
2n+1,2n^2+2n,2n^2+2n+1(n是正整数)
(3)(8,15,17),(12,35,37)……
(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)
勾股定理的证明
一、赵爽勾股圆方图证明法
中国三国时期赵爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图。
二、刘徽“割补术”证明法
中国魏晋时期伟大数学家刘徽作《九章算术注》时,依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”
其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!