百科狗-知识改变命运!
--

求微分和求导一样吗

是丫丫呀1年前 (2023-12-19)阅读数 5#综合百科
文章标签函数导数

并不完全一样

微分和求导并不完全一样,但在比较基础的一元函数微积分的应用中它们可以理解为等价的,不同的地方喜欢用的不一样。

扩展资料:

这两个等价的概念,究竟有何不同的内涵。

上文已经描述了取微分的内涵:用线性函数逼近函数,是一种具体的操作。而取导数,是给了点?x0?一个新的对应值,即它的导数值?f′(x0)?,实际上这是一个新的映射(函数),即导函数。由于可导和可微是等价的,我们也可以这样理解:取微分是画了一条线性函数,这线性函数能在点附近较好逼近函数;取导数是给出了这条线性函数的斜率。一个是画出直线,一个是给出斜率,读者应该好好体会两者内涵的不同。

这便是导数与微分的内涵的不同。

在(二)多元函数中,可微比可导强得多。我们沿用上面的说法,可微是指在点?(x0,y0)?附近,可以画出一个平面来逼近函数,其误差函数应当是距离?r?的高阶无穷小。

求微分和求导一样吗

容易想到,若二元函数在点?(x0,y0)?可微,这说明函数在任何方向都可导。如若不然,函数在某个方向不可导,则作为一元函数,函数在这个方向不可微,进而函数在这个点是不可微的。这就说明了,可微可以推出可导。

但坐标轴方向上的偏导数存在,不一定表示函数可微。这是因为偏导数仅仅刻画了坐标轴方向的变化状态,而没有给出其他方向的变化状态的任何信息。并且,即使任何方向偏导数存在,函数也不一定可微。

这说明,在多元函数中,可微比可导强得多。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)