特殊函数有什么用
比如:1、作为一些重要的方程的解,比如Bessel函数。2、作为一些有趣的函数的延拓:比如Gamma函数。3、自然出现的或者技术上需要的:比如各种Zeta函数,各种L函数,各种椭圆函数。4、工程里或其他应用需要的:比如sinc函数。
.一次函数(包括正比例函数)
最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R
值域:R
奇偶性:无
周期性:无
平面直角坐标系解析式(下简称解析式):
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:
题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
3.反比例函数
在平面直角坐标系上的图象为双曲线。
定义域:(负无穷,0)∪(0,正无穷)
值域:(负无穷,0)∪(0,正无穷)
奇偶性:奇函数
周期性:无
解析式:y=1/x
4.幂函数
y=x^a
①y=x^3
定义域:R
值域:R
奇偶性:奇函数
周期性:无
图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称
后得到的图象(类比,这个方法不能得到三次函数图象)
②y=x^(1/2)
定义域:[0,正无穷)
值域:[0,正无穷)
奇偶性:无(即非奇非偶)
周期性:无
图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转
90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次
函数图象)
5.指数函数
在平面直角坐标系上的图象(太难描述了,说一下性质吧……)
恒过点(0,1)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。
定义域:R
值域:(0,正无穷)
奇偶性:无
周期性:无
解析式:y=a^x
a>0
性质:与对数函数y=log(a)x互为反函数。
*对数表达:log(a)x表示以a为底的x的对数。
6.对数函数
在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称。
恒过定点(1,0)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。
定义域:(0,正无穷)
值域:R
奇偶性:无
周期性:无
解析式:y=log(a)x
a>0
性质:与对数函数y=a^x互为反函数。
7.三角函数
⑴正弦函数:y=sinx
图象为正弦曲线(一种波浪线,是所有曲线的基础)
定义域:R
值域:[-1,1]
奇偶性:奇函数
周期性:最小正周期为2π
对称轴:直线x=kπ/2 (k∈Z)
中心对称点:与x轴的交点:(kπ,0)(k∈Z)
⑵余弦函数:y=cosx
图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得。
定义域:R
值域:[-1,1]
奇偶性:偶函数
周期性:最小正周期为2π
对称轴:直线x=kπ (k∈Z)
中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)
⑶正切函数:y=tg x
图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上。
定义域:{x│x≠π/2+kπ}
值域:R
奇偶性:奇函数
周期性:最小正周期为π
对称轴:无
中心对称点:与x轴的交点:(kπ,0)(k∈Z)。
反函数图像与原函数关于y=x轴对称
反函数总是相对原函数而言的,原函数如果单调,反函数也单调(当然并不是单调性完全相同),原函数定义域就是反函数的值域,原函数的值域就是反函数的定义域。其他还有周期性,对称性,都要针对原函数来考虑。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!