百科狗-知识改变命运!
--

如何判断方程有根还是无根

乐乐1年前 (2023-12-20)阅读数 7#综合百科
文章标签方程实数

 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则

X1+X2= -b/a

X1*X2=c/a

用韦达定理判断方程的根

一元二次方程ax^2+bx+c=0 (a≠0)中,

由二次函数推得 若b^2-4ac0 则方程有两个不相等的实数根

由一元二次方程求根公式为:X = (-b±√b^2-4ac)/2a

(注意:a指二次项系数,b指一次项系数,c指常数,且a≠0)

可得X1= (-b+√b^2-4ac)/2a ,X2= (-b-√b^2-4ac)/2a

1. X1﹢X2=(-b+√b^2-4ac)/2a+(-b-√b^2-4ac)/2a

所以X1﹢X2=-b/a

2. X1X2= [(-b+√b^2-4ac﹚÷2a]×[(-b-√b^2-4ac﹚÷2a]

所以X1X2=c/a

(补充:X1^2+X2^2=(X1+X2)^2-2X1·X2

(扩充)3.X1-X2=(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a

又因为X1.X2的值可以互换,所以则有

X1-X2=±(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a

所以X1-X2=±(√b^2-4ac)/a

韦达定理推广的证明

设X1,X2,……,xn是一元n次方程∑AiXi =0的n个解。

如何判断方程有根还是无根

则有:An(x-x1)(x-x2)……(x-xn)=0

所以:An(x-x1)(x-x2)……(x-xn)=∑AiXi (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理)

通过系数对比可得:

A(n-1)=-An(∑xi)

A(n-2)=An(∑xixi)

A0=[(-1) ]×An×ΠXi

所以:∑Xi=[(-1) ]×A(n-1)/A(n)

∑XiXj=[(-1) ]×A(n-2)/A(n)

ΠXi=[(-1) ]×A(0)/A(n)

其中∑是求和,Π是求积。

一元五次方程验证:

已知一个一元五次方程:a1*(x^5)+b*(x^4)+c*(x^3)+d*(x^2)+e*x+f = 0 设该式为形式1

根据高斯的代数原理:上式在复数范围内必可分解成: a1*(x-x1)*(x-x2)*(x-x3)*(x-x4)*(x-x5)=0 的形式;且x1,x2,x3,x4,x5是该多项式在复数范围内的根。

把上式展开成:

-a1*x1*x2*x3*x4*x5+a1*x*x2*x3*x4*x5+a1*x*x1*x3*x4*x5-a1*(x^2)*x3*x4*x5+a1*x*x1*x2*x4*x5-a1*(x^2)*x2*x4*x5-a1*(x^2)*x1*x4*x5+a1*(x^3)*x4*x5+a1*x*x1*x2*x3*x5-a1*(x^2)*x2*x3*x5-a1*(x^2)*x1*x3*x5+a1*(x^3)*x3*x5-a1*(x^2)*x1*x2*x5+a1*(x^3)*x2*x5+a1*(x^3)*x1*x5-a1*(x^4)*x5+a1*x*x1*x2*x3*x4-a1*(x^2)*x2*x3*x4-a1*(x^2)*x1*x3*x4+a1*(x^3)*x3*x4-a1*(x^2)*x1*x2*x4+a1*(x^3)*x2*x4+a1*(x^3)*x1*x4-a1*(x^4)*x4-a1*(x^2)*x1*x2*x3+a1*(x^3)*x2*x3+a1*(x^3)*x1*x3-a1*(x^4)*x3+a1*(x^3)*x1*x2-a1*(x^4)*x2-a1*(x^4)*x1+a1*(x^5)=0

上述方程可化简成:

a1*(x^5)-(x2+x1+x4+x5+x3)*(x^4)*a1+(x4*x5+x1*x3+x2*x3+x1*x2+x2*x4+x1*x4+x3*x4+x3*x5+x2*x5+x1*x5)*

(x^3)*a1-(x3*x4*x5+x2*x3*x5+x1*x3*x5+x1*x2*x5+x2*x4*x5+x1*x4*x5+x2*x3*x4+x1*x3*x4+x1*x2*x4+x1*x2*x3)*

(x^2)*a1+(x2*x3*x4*x5+x1*x3*x4*x5+x1*x2*x4*x5+x1*x2*x3*x5+x1*x2*x3*x4)*x*a1-x1*x2*x3*x4*x5*a1=0

设化简后的方程为形式3.

最后对比形式1与形式3的x次方相同的数,即可得该多项式根与系数的关系:

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)