百科狗-知识改变命运!
--

时间序列笔记-ARMA模型(二)

梵高1年前 (2023-12-20)阅读数 6#综合百科
文章标签模型数据

在datacamp网站上学习“ Time Series with R ”track

“ARIMA Modeling with R”课程 做的对应笔记。

学识有限,错误难免,还请不吝赐教。

学习的课程为“ARIMA Modeling with R”,主要用 astsa 包。

如无特殊说明,笔记中所使用数据均来自datacamp课程。

ARMA模型拟分为(一)(二)两部分发布,第一部分主要包括ARMA模型简介,模拟ARMA数据、拟合ARMA模型,单纯的AR模型或MA模型的定阶。第二部分主要包括ARMA模型的定阶策略、模型选择、残差分析。模型预测部分见ARIMA模型的笔记。

在 时间序列笔记-ARMA模型(一) 中,我们提到如果数据符合单纯AR或MA模型,则根据ACF和PACF图的截尾情况可以比较方便的确定AR阶数或MA阶数:

但是如果p q都不为0,那么ACF和PACF图均为拖尾表现,p、q的值就无法一眼看出来了,例如我们模拟一个ARMA数据:

可以看出,从ACF和PACF图中很难判断p q的值。

时间序列笔记-ARMA模型(二)

推荐的定阶策略:从最低阶开始拟合模型,每次增加一个参数并观察拟合结果的变化。

根据推荐的定阶策略,我们实际上要拟合很多不同模型,根据拟合结果从中选择最优模型作为最终模型。判断模型拟合优劣的指标有很多,这里我们简单介绍2个最为常用的指标:AIC BIC

简单来说,AIC或BIC会计算模型在训练数据上的误差:

该项越小越好,为防止过拟合,再加上对模型复杂性的惩罚项:

随着模型复杂度越大,Error项会减小但是惩罚项会增加。

AIC和BIC对于模型拟合效果的判断都是越小越好。二者对于Error项的计算是一样的,不同在于惩罚项设置不同:AIC中 ,BIC中

我在上看到一篇讲AIC BIC比较详细的博客,推荐阅读: AIC和BIC准则

在进行模型拟合时,sarima()函数会生成模型的AIC值和BIC值,帮助我们我们选择适当的模型。

ARMA模型假定残差是一个高斯白噪声,进行残差分析可以考察这个假定。

用sarima()函数拟合模型时会自动输出一个残差分析图,包括四个部分:

下例中对同一个数据分别拟合两个ARMA模型并考察残差情况:

残差分析是建模的重要环节,也有助于我们进行模型选择。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)