百科狗-知识改变命运!
--

解释《数字信号处理》中的概念

一语惊醒梦中人1年前 (2023-12-20)阅读数 5#综合百科
文章标签时域周期

先看看信号与系统,FS-FT-DTFT-DFS-DFT一系列关系看明白了也记住了。它时域频域的离散性周期性就是这样的,可以看看公式。正因为它本身有这样的性质,所以才要时域和频域都周期来达到时域频域都离散的目的,因为是数字信号嘛。

复指数(函数)的傅立叶变换

复指数序列的傅立叶变换

傅里叶级数

解释《数字信号处理》中的概念

FS :随着w越小(周期越大)频域上波形形状从离散接近连续 ;时域上周期到非周期(也可理解周期无穷大)->FT

如果时域上采样周期、非周期连续函数(时间),频率上会怎么样?

“采样动作”可用数学模型表示即模拟信号与脉冲信号信号相乘。通过时域相乘、频域卷积性质,得出频谱。

scipy.signal.unit_impulse

注:采样角频率 omega_sampling

注:采样角频率 omega_sampling

时域离散采样、频率周期延拓

连续函数(时间),谐波频率

离散序列(时间),谐波频率

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)