八年级数学公式:多边形内角和公式
#初中奥数# 导语奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。下面是 为大家带来的八年级数学公式:多边形内角和公式,欢迎大家阅读。
已知
已知正多边形内角度数则其边数为:360÷(180-内角度数)
推论
任意多边形的外角和=360
正多边形任意两个相邻角的连线所构成的三角形是等腰三角形
多边形的内角和
定义
〔n-2〕×180?
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n?180°,以O为公共顶点的n个角的和是360°
所以n边形的内角和是n?180°-2×180°=(n-2)?180°.
即n边形的内角和等于(n-2)×180°.
证法二:连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)?180°
所以n边形的内角和是(n-2)×180°.
证法三:在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)?180°
以P为公共顶点的(n-1)个角的和是180°
所以多边形内角和公式n边形的内角和是(n-1)?180°-180°=(n-2)?180°.
内角的和公式:(n-2)×180°(n大于等于3且n为整数),则多边形各内角度数为:(n - 2)×180°÷n。
多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。
n边形内角和为(n-2)*180度。
证明:在n边形内任取一点,连结该点与各个顶点,把n边形分成n个三角形。
因为n个三角形的内角的和等于n·180°,以红圈圈住的点为公共顶点的n个角的和是圆周角360°。
所以n边形的内角和是n·180°-2×180°=(n-2)·180°。(n为边数)。
即n边形的内角和等于(n-2)×180°。(n为边数)。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!