什么是力矩
力矩表示力对物体作用时所产生的转动效应的物理量。
力矩的定义:
力矩(momentofforce)力对物体产生转动作用的物理量。可以分为力对轴的矩和力对点的矩。即:M=r×F。其中r是从转动轴到着力点的位置矢量,F是矢量力;力矩也是矢量。
力对点的矩:
力矩是量度力对物体产生转动效应的物理量。可分为力对点的矩和力对轴的矩。力对某一点的矩是量度力对物体作用绕该点转动效应的物理量。力F对某点O的力矩定义为:力F的作用点A相对于O点的矢径r与力F的矢积用M0(F)表示,M0(F)=r×F。
力对点的矩是矢量,大小等于F的大小与O点到F的作用线的垂直距离d(称为力臂)的乘积,或者等于以r、F为邻边的平行四边形的面积rFsinα,α是r与F夹角。M0(F)方向垂直于r与F所组成的平面,r、F、M。(F)三者满足右手螺旋关系。
对空间任何点都可以定义力对点的矩。由于力对点的矩依赖于力的作用点的位置矢径r,所以同一个力对空间不同的点力矩是不同的。当力的作用线过空间某点,则该力对此点的矩为零。
如果有几个共点力(作用点为A)Fi(i=1,2,……,n)作用于物体,合力F=F1+F2+…+Fn,则合力对O点的力矩M0(F)=r×(F1+F2+……+F)=r×F1+r×F2+…+r×Fn=M01+M02…+M0n,即合力对某点O的力矩等于各分力对同一点力矩的矢量和。矢量M0(F)称为此力系对O点的主矩。?
力对轴的矩:
力对某轴的矩是量度力对物体作用绕该轴转动效应的物理量。定义为,力F对O点的力矩M在过O点的任一轴线OZ轴上的投影称为力F对OZ轴的力矩,用Mz表示,Mz=Mcosβ,β为矢量M与OZ轴正方向的夹角,并规定物体转动正方向与OZ轴正方向满足右手螺旋关系,如图2中箭头所示。
Mz是一个代数量,其正负表示物体转动倾向,Mz>0表示力F使物体转动倾向与转动正方向一致,Mz
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!