百科狗-知识改变命运!
--

高数 曲线积分 格林公式 方向 疑惑。

一语惊醒梦中人1年前 (2023-12-21)阅读数 9#综合百科
文章标签积分曲线

这个问题是这样的:

首先明白一个概念:什么是区域边界是正向的,就是你站在曲线上走时,向左才能看到区域,你么你走的是正向。反之是负向的。

高数 曲线积分 格林公式 方向 疑惑。

你补了一个曲线小圆l,它与外围大曲线L联合形成一个区域(即你图中绿部分D1)的边界,这个区域有两个边界曲线,L和了,那么这个边界的正向是:L逆时针,l顺时针。但单独看小圆l,它围成的区域是它的内部园,它的正向是逆时针,所以小圆的正向与负向是相对不同区域而言的,

你这个问题搞不清楚,我建议你这样看:你不要用曲线的正负,用顺时针与逆时针。你把第一个问号改成(L逆+l顺),那么第二个问号是(l顺),第三个问号是(l顺),那后面的积分就是(l逆),这不就是化成同方向的小圆上的积分了吗。

你仔细体会下:核心点就是区域不一样,方向不一样。小圆如看成外面的边界与看成内部区域的边界它的正向是不一样的。

哥们给你都说了吧:

第一类曲线积分,可以通过将ds转化为dx或dt变成定积分来做,但是单纯的第一类曲线积分和二重积分没有关系,只有通过转化为第二类曲线积分后,要是满足格林公式或者斯托科斯公式条件,可以用公式转化为简单的曲面积分,再将曲面积分投影到坐标面上转化为二重积分来计算,这是第一类曲线积分和二重积分关系,但是第一类曲线积分和三重积分么有任何关系……

第一类曲面积分,可以通过公式变换,将dS转化为dxdy,直接转化为二重积分来做,但是和三重积分没有任何关系,只有通过转化为第二类曲面积分,满足了高斯公式条件,才能用高斯公式转化为三重积分来计算

曲线积分与定积分,曲面积分与二重积分的区别:曲面积分、曲线积分都是给定了特定的曲线或者曲面的方程形式,意思是在曲线上或曲面上进行积分的,而不是像普通的二重积分和定积分那样直接在xyz坐标上进行积分,所以要将第一类曲线积分,第一类曲面积分通过给定的方程形式变换成在xyz坐标进行积分,另外既然给定了曲线或曲面方程,就可以根据方程把一个量表示成其他的两个量的关系,因为是在给定的曲线或曲面方程上进行积分的,所以要满足给定的曲线或曲面的方程,所以各个量之间可以代换的,这个普通的定积分和二重积分不能这么做的……

第一类曲线积分:对线段的曲线积分,有积分顺序,下限永远小于上限……求解时米有第二类曲线积分简单,需要运用公式将线段微元ds通过给定的曲线方程形式表示成x与y的形式,进行积分,这个公式书里面有的,就是对参数求导,然后再表示成平分和的根式……

第二类曲线积分:对坐标的曲线积分,没有积分顺序,意思是积分上下限可以颠倒了……

第一类曲线积分和第二类曲线积分的关系:可以用余弦进行代换,余弦值指的是线段的切向量,这个书本里面的,我就不写了

第一类曲面积分:对面积的曲面积分,求解时要通过给定的曲面方程形式,转化成x与y的形式,这个公式书里面也有的,就是求偏导吧?然后表示成平方和根式的形式

第二类曲面积分:对坐标的曲线积分,这个简单一些,好好看看就可以了

两类曲面积分的联系:可以用余弦代换,但是这个余弦是曲面的法向量

下面给出第一类曲线积分和第一类曲面积分的联系,方便你记忆:都是要转化成在xyz坐标面上的积分,都是平方和的根式形式,但是第一类曲线积分是对参数求导,第一类曲面积分是求偏导,为何都是平方和的根式形式?原因是在微段或微面上用直线代替曲线,相当于正方体求对角线,你想想是不是,肯定要出现平方和的根式,你好好看看推导过程……

第二类曲线积分与第二类曲面积分的关系:

第二类曲线积分如果封闭的话,可以用格林公式或斯托克斯公式化简

第二类曲面积分如果封闭的话,可以用高斯公式进行化简

这些东西很有趣的,你要学会对应的记忆啊……

格林公式研究的是把平面第二类曲线积分转化为二重积分来做,但是要注意正方向的选取,以及平面单连通和平面复连通,有时需要取辅助线构成封闭曲线的,但是要计算辅助曲线的曲线积分,因为此时的格林公式值是由两条曲线叠加后产生的,这个很重要,因为积分与路径无关都要涉及到平面复连通和单连通的计算……

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)