百科狗-知识改变命运!
--

LDL,VLDL,HDL,与胆固醇之间的关系是什么?

梵高11个月前 (12-21)阅读数 5#综合百科
文章标签脂肪酸胆固醇

有时候会听到别人说,你胆固醇偏高了不好?你总胆固醇高,还要看是,LDL低密度脂蛋白高?还是HDL高密底脂蛋白高?这是怎么回事呢?

先来认知一下什么是血脂?血浆当中所含有的脂类统称为血脂。包括:甘油三酯,磷脂,胆固醇,胆固醇酯,游离脂肪酸。

脂类不容于水的,在水溶液中呈混浊状态。然则人体血浆中脂类含量平均高达5g/升,但血浆仍然清澈透明。

其原因在于脂类与一类载脂蛋白结合,形成可溶性的脂蛋白存在于血浆中,而游离脂肪酸则与血清蛋白结合形成脂清蛋白。

这二种形式均有利于脂类的运输和代谢。因此,脂蛋白是脂类在血中转运的主要形式。

因为组成脂蛋白的脂类比例,及载脂蛋白的种类和含量不同,因而各种脂蛋白的理化性质不同。通过用超速离心法,可将他们分类:

CM 乳糜微粒;

VLDL极低密度脂蛋的;

LDL低密度脂蛋白;

HDL高密度脂蛋白;

CM乳糜微粒是由小肠粘膜细胞合成。含有较多的甘油三脂。主要的生理功能是运转外源性的,胆固醇,甘油三酯,磷脂等。

VLDL极低密度脂蛋白,主要在肝脏合成。携带含有较多的甘油三脂。主要的生理功能运输内源性的甘油三脂。

LDL由VLDL在血浆中转化而来。携带含有较多的胆固醇。正常人空腹时血浆中的胆固醇主要存在于LDL中,其中2/3以胆固醇的形式存在。主要生理功能是将肝脏合成的内源性的胆固醇,运转到肝脏外组织利用。这也是被人们称为不好的LDL(胆固醇)的原因。

HDL高密度脂蛋白,是由肝和小肠粘膜合成,以肝合成为主。含有较多的蛋白质,磷脂,胆固醇。HDL的主要作用是将肝外组织的胆固醇转运到肝脏,代谢,利用。可以将外周围组织中衰老细胞膜中的胆固醇转运到肝内代谢,并排出体外。这也是为什么人们说HDL(胆固醇)是好的脂蛋白的原因。

认知一下高脂血症?

各种脂蛋白的代谢,就是转运脂类的过程。空腹时血脂高于正常范围即为高脂(蛋白)血症。

商脂血症是常见的一类脂蛋白代谢紊乱疾病。主要是指血浆中有一类,或几类浓度高于正常参考值范畴的现象。

一般以成人空腹12-24小时血浆甘油三脂超过1.8mmol/L,胆固醇超过6.7 mmol/L为参考标准。

血浆中LDL增多,或HDL下降,均可以使血浆中胆固醇含量增多,易在动脉内膜下沉积,严重时会造成动脉粥样硬化。而导致所谓的心脑血管疾病。

到现在为止,我们弄清楚胆固醇是怎么回事。胆固醇本身就是无罪的。

胆固醇本身就是身体需要的生理物质。胆固醇的偏高,或偏低,不在胆固醇本身,而在于载脂蛋白是否出问题。

我们所说的胆固醇偏高,不是胆固醇的问题,而是脂蛋白的代谢出了问题。要注意,害怕的不是胆固醇本身,而是运转胆固醇的载脂蛋白出了问题。

就算你不从食物当中摄取任何含胆固醇的食物。你的肝脏,小肠,几乎所有的组织器官,都会源源不断会制造胆固醇,以满足自身生理需要。

一旦体内运输胆固醇的载脂蛋白出现问题,就会导致胆固醇偏高,胆固醇一偏高,就容易沉积在血管内壁,形容形成粥样硬化等。

此时,要害怕的,担心的,不是胆固醇,而是载脂蛋白。特别是LDL低密度脂蛋白增加,或HDL减少。要调整的,治疗的,控制的是脂蛋白,而不是胆固醇。

回头再说一下关于鸡蛋的问题。

很多人不敢吃鸡蛋的原因,就在于蛋黄里面含有很高的胆固醇。一个鸡蛋大概含有300 mg左右。胆固醇的问题前面已经说过了,身体本身就需要源源不断的胆固醇,有问题的不是胆固醇本身。

如果不从食物中摄取,那么,身体也会制造合成。如果你从食物当中摄入优质的胆固醇,那么就可以减少身体的合成。

a:可能没人告诉你,蛋黄也含有丰富的卵磷脂,而卵磷脂是可以帮助胆固醇吸收利用的。

b:鸡蛋里面也含有很好的维生素A,E,B1,B2。

c:鸡蛋里含有优质完整的高蛋白。

d:鸡蛋还含有非常之珍贵,非常之好的单不饱和脂肪酸。

鸡蛋的这些营养物质都是很珍贵的。要知道,在整个自然界当中,凡是含胆固醇高的部位,都是在最重要的核心生命部位,都是在动物,人体主要的器官组织。

你想想就知道胆固醇的重要性。让鸡蛋,让胆固醇解放吧,不用去担心,放吃鸡蛋就好。

人体脂肪,也就是通俗意义上讲的肥肉。当然,人体脂肪并不仅仅指外在我们看得到的肥肉,还有很多是我们看不到的。

人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸).水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(Chylomicron),由淋巴系统进入血液循环。

基本介绍 中文名 :人体脂肪 外文名 :Body fat 水解物 :甘油、脂肪酸 吸收 :被小肠吸收进入血液 来源 :人体自身合成、食物供给 人体脂肪形成,人体主要脂类,脂类消化吸收,甘油三酯代谢,能量生成,合成代谢,重要衍生物,其他氧化方式,生成及利用,磷脂的代谢,胆固醇的代谢,蛋白代谢,代谢, 人体脂肪形成 人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸).水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(Chylomicron),由淋巴系统进入血液循环。 人体主要脂类 人体脂类主要包括以下几种:

1?脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给,特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。

2?磷脂:由甘油与脂肪酸、磷酸及含氮化合物生成。

3?鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。

4?胆固醇脂:胆固醇与脂肪酸结合生成。 人体脂肪 脂类消化吸收 消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。

脂类的吸收含两种情况:

中链、短链脂肪酸构成的甘油三酯乳化后即可吸收——>肠黏膜细胞内水解为脂肪酸及甘油——>门静脉入血。长链脂肪酸构成的甘油三酯在肠道分解为长链脂肪酸和甘油一酯,再吸收——>肠黏膜细胞内再合成甘油三酯,与载脂蛋白、胆固醇等结合成乳糜微粒——>淋巴入血。 甘油三酯代谢 (一)合成代谢

甘油三酯是机体储存能量及氧化供能的重要形式。

1?合成部位及原料

肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。若肝合成的甘油三酯不能及时转运,会形成脂肪肝。脂肪细胞是机体合成及储存脂肪的仓库。

合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。

2?合成基本过程

①甘油一酯途径:这是小肠黏膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。

②甘油二酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。

(二)分解代谢

即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。

甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。

(三)脂肪酸的分解代谢—β-氧化

在氧供充足条件下,脂肪酸可分解为乙酰CoA,彻底氧化成CO2和H2O并释放出大量能量,大多数组织均能氧化脂肪酸,但脑组织例外,因为脂肪酸不能通过血脑屏障。其氧化具体步骤如下:

1. 脂肪酸活化,生成脂酰CoA。

2.脂酰CoA进入线粒体,因为脂肪酸的β-氧化线上粒体中进行。这一步需要肉碱的转运。肉碱脂酰转移酶I是脂酸β氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能。

3.脂肪酸的β-氧化,基本过程(见原书)

丁酰CoA经最后一次β氧化:生成2分子乙酰CoA

故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA,通过呼吸链氧化前者生成2分子ATP,后者生成3分子ATP。 4?脂肪酸氧化的能量生成

脂肪酸与葡萄糖不同,其能量生成多少与其所含碳原子数有关,因每种脂肪酸分子大小不同其生成ATP的量中不同,以软脂酸为例;1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子ATP。故1分子软脂酸彻底氧化共生成:

7×2+7×3+8×12-2=129分子ATP

以重量计,脂肪酸产生的能量比葡萄糖多。 能量生成 脂肪酸与葡萄糖不同,其能量生成多少与其所含碳原子数有关,因每种脂肪酸分子大小不同其生成ATP的量中不同,以软脂酸为例;1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子ATP。故1分子软脂酸彻底氧化共生成:

7×2+7×3+8×12-2=129分子ATP

以重量计,脂肪酸产生的能量比葡萄糖多。

(四)脂肪酸的其他氧化方式

1?不饱和脂肪酸的氧化,也在线粒体进行,其与饱和脂肪酸不同的是键的顺反不同,通过异构体之间的相互转化,即可进行β-氧化。

2?过氧化酶体脂酸氧化:主要是使不能进入线粒体的二十碳、二十二碳脂肪酸先氧化成较短的脂肪酸,以便能进入线粒体内分解氧化,对较短键脂肪酸无效。

3?丙酸的氧化:人体含有极少量奇数碳原子脂肪酸氧化后还生成1分子丙酰CoA,丙酰CoA经羧化及异构酶作用转变为琥珀酰CoA,然后参加三羧酸循环而被氧化。 合成代谢 1?脂肪酸主要从乙酰CoA合成,凡是代谢中产生乙酰CoA的物质,都是合成脂肪酸的原料,机体多种组织均可合成脂肪酸,肝是主要场所,脂肪酸合成酶系存在于线粒体外胞液中。但乙酰CoA不易透过线粒体膜,所以需要穿梭系统将乙酰CoA转运至胞液中,主要通过柠檬酸-丙酮酸循环来完成。

脂酸的合成还需ATP、NADPH等,所需氢全部NADPH提供,NADPH主要来自磷酸戊糖通路。

2?软脂酸的合成过程(见原书)

乙酰CoA羧化酶是脂酸合成的限速酶,存在于胞液中,辅基为生物素。柠檬酸、异柠檬酸是其变构激活剂,故在饱食后,糖代谢旺盛,代谢过程中的柠檬酸可别构激活此酶促进脂肪酸的合成,而软脂酰CoA是其变构抑制剂,降低脂肪酸合成。此酶也有共价修饰调节,胰高血糖素通过共价修饰抑制其活性。

②从乙酰CoA和丙二酰CoA合成长链脂肪酸,实际上是一个重复加长过程,每次延长2个碳原子,由脂肪酸合成多酶体系催化。哺乳动物中,具有活性的酶是一二聚体,此二聚体解聚则活性丧失。每一亚基皆有ACP及辅基构成,合成过程中,脂酰基即连在辅基上。丁酰是脂酸合成酶催化第一轮产物,通过第一轮乙酰CoA和丙二酰CoA之间缩合、还原、脱水、还原等步骤,C原子增加2个,此后再以丙二酰CoA为碳源继续前述反应,每次增加2个C原子,经过7次循环之后,即可生成16个碳原子的软脂酸。

3?酸碳链的加长。

碳链延长在肝细胞的内质网或线粒体中进行,在软脂酸的基础上,生成更长碳链的脂肪酸。

4?脂肪酸合成的调节(过程见原书)

胰岛素诱导乙酰CoA羧化酶、脂肪酸合成酶的合成,促进脂肪酸合成,还能促使脂肪酸进入脂肪组织,加速合成脂肪。而胰高血糖素、肾上腺素、生长素抑制脂肪酸合成。 重要衍生物 前列腺素、血栓素、白三烯均由多不饱和脂肪酸衍生而来,在调节细胞代谢上具有重要作用,与炎症、免疫、过敏及心血管疾病等重要病理过程有关。在激素或其他因素 *** 下,膜脂由磷脂酶A2催化水解,释放花生四烯酸,花生四烯酸在脂过氧化酶作用下生成丙三烯,在环过氧化酶作用下生成前列腺素、血栓素。 其他氧化方式 1?不饱和脂肪酸的氧化,也在线粒体进行,其与饱和脂肪酸不同的是键的顺反不同,通过异构体之间的相互转化,即可进行β-氧化。

2?过氧化酶体脂酸氧化:主要是使不能进入线粒体的二十碳、二十二碳脂肪酸先氧化成较短的脂肪酸,以便能进入线粒体内分解氧化,对较短键脂肪酸无效。

3?丙酸的氧化:人体含有极少量奇数碳原子脂肪酸氧化后还生成1分子丙酰CoA,丙酰CoA经羧化及异构酶作用转变为琥珀酰CoA,然后参加三羧酸循环而被氧化。 生成及利用 酮体包括乙酰乙酸、β-羟丁酸、丙酮。酮体是脂肪酸在肝分解氧化时特有的中间代谢物,脂肪酸在线粒体中β氧化生成的大量乙酰CoA除氧化磷酸化提供能量外,也可合成酮体。但是肝却不能利用酮体,因为其缺乏利用酮体的酶系。

1?生成过程: 2?利用:肝生成的酮体经血运输到肝外组织进一步分解氧化。

总之肝是生成酮体的器官,但不能利用酮体,肝外组织不能生成酮体,却可以利用酮体。

3?生理意义

长期饥饿,糖供应不足时,脂肪酸被大量动用,生成乙酰CoA氧化供能,但象脑组织不能利用脂肪酸,因其不能通过血脑屏障,而酮体溶于水,分子小,可通过血脑屏障,故此时肝中合成酮体增加,转运至脑为其供能。但在正常情况下,血中酮体含量很少。

严重糖尿病患者,葡萄糖得不到有效利用,脂肪酸转化生成大量酮体,超过肝外组织利用的能力,引起血中酮体升高,可致酮症酸中毒。

4?酮体生成的调节

①1〃饱食或糖供应充足时:胰岛素分泌增加,脂肪动员减少,酮体生成减少;2〃糖代谢旺盛3-?磷酸甘油及ATP充足,脂肪酸脂化增多,氧化减少,酮体生成减少;3〃糖代谢过程中的乙酰CoA和柠檬酸能别构激活乙酰CoA羧化酶,促进丙二酰CoA合成,而后者能抑制肉碱脂酰转移酶

Ⅰ,阻止β-氧化的进行,酮体生成减少。

②饥饿或糖供应不足或糖尿病患者,与上述正好相反,酮体生成增加。 磷脂的代谢 含磷酸的脂类称磷脂可分为两类:由甘油构成的磷脂称甘油磷脂,由鞘氨醇构成的称鞘磷脂。

(一)甘油磷脂的代谢

甘油磷脂由1分子甘油与2分子脂肪酸和1分子磷酸组成,2位上常连的脂酸是花生四烯酸,由于与磷酸相连的取代基团不同,又可分为磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、二磷脂酰甘油(心磷脂)等。

1?甘油磷脂的合成

①合成部位及原料

全身各组织均能合成,以肝、肾等组织最活跃,在细胞的内质网上合成。合成所用的甘油、脂肪酸主要用糖代谢转化而来。其二位的多不饱和脂肪酸常需靠食物供给,合成还需ATP、CTP。

②合成过程

磷脂酸是各种甘油磷脂合成的前体,主要有两种合成途径:

1〃甘油二酯合成途径:脑磷脂、卵磷脂由此途径合成,以甘油二酯为中间产物,由CDP胆碱等提供磷酸及取代基。

2〃CDP-甘油二酯途径:肌醇磷脂,心磷脂由此合成,以CDP-甘油二酯为中间产物再加上肌醇等取代基即可合成。

2?甘油磷脂的降解

主要是体内磷脂酶催化的水解过程。其中磷脂酶A?2能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂及不饱和脂肪酸,此脂肪酸多为花生四烯酸,Ca2+为此酶的激活剂。此溶血磷脂是一类较强的表面活性物质,能使细胞膜破坏引起溶血或细胞坏死。再经溶血磷脂酶继续水解后,即失去溶解细胞膜的作用。

(二)鞘磷脂的代谢

主要结构为鞘氨醇,1分子鞘氨醇通常只连1分子脂肪酸,二者以酰胺链相连,而非酯键。再加上1分子含磷酸的基团或糖基,前者与鞘氨醇以酯键相连成鞘磷脂,后者以β糖苷键相连成鞘糖脂,含量最多的神经鞘磷脂即是以磷酸胆碱,脂肪酸与鞘氨醇结合而成。

1?合成代谢

以脑组织最活跃,主要在内质网进行。反应过程需磷酸呲哆醛,NADPH+H+等辅酶,基本原料为软脂酰CoA及丝氨酸。

LDL,VLDL,HDL,与胆固醇之间的关系是什么?

2?降解代谢

由神经鞘磷脂酶(属磷脂酶C类)作用,使磷酸酯键水解产生磷酸胆碱及神经酰胺(N-脂酰鞘氨醇)。若缺乏此酶,可引起痴呆等鞘磷脂沉积病。 胆固醇的代谢 (一)合成代谢

1.几乎全身各组织均可合成,肝是主要场所,合成主要在胞液及内质网中进行。

2.合成原料乙酰CoA是合成胆固醇的原料,因为乙酰CoA是在线粒体中产生,与前述脂肪酸合成相似,它须通过柠檬酸——丙酮酸循环进入胞液,另外,反应还需大量的NADPH+H+及ATP。合成1分子胆固醇需18分子乙酰CoA、36分子ATP及16分子NADPH+H+。乙酰CoA及ATP多来自线粒体中糖的有氧氧化,而NADPH则主要来自胞液中糖的磷酸戊糖途径。

3?合成过程

简单来说,可划分为三个阶段。

①甲羟戊酸(MVA)的合成:首先在胞液中合成HMGCoA,与酮体生成HMGCoA的生成过程相同。但在线粒体中,HMGCoA在HMGCoA裂解酶催化下生成酮体,而在胞液中生成的HMGCoA则在内质网HMGCoA还原酶的催化下,由NADPH+H+供氢,还原生成MVA。HMGCoA还原酶是合成胆固醇的限速酶。

②鲨烯的合成:MVA由ATP供能,在一系列酶催化下,生成3OC的鲨烯。

③胆固醇的合成:鲨烯经多步反应,脱去3个甲基生成27C的胆固醇。

4.调节

HMGCoA还原酶是胆固醇合成的限速酶。多种因素对胆固醇的调节主要是通过对此酶活性的影响来实现的。 ②胆固醇:可反馈抑制胆固醇的合成。

③激素:胰岛素能诱导HMGCoA还原酶的合成,增加胆固醇的合成,胰高血糖素及皮质醇正相反。

(二)胆固醇的转化

1?转化为胆汁酸,这是胆固醇在体内代谢的主要去路。

2?转化为固醇类激素,胆固醇是肾上腺皮质、卵巢等合成类固醇激素的原料,此种激素包括糖皮质激素及性激素。

3?转化为7-脱氢胆固醇,在皮肤,胆固醇被氧化为7-脱氢胆固醇,再经紫外光照射转变为VitD3。 蛋白代谢 (一)血浆脂蛋白分类

1?电泳法:可将脂蛋白分为前β、β脂蛋白及乳糜微粒(CM)。

2?超速离心法:分为乳糜微粒、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)分别相当于电泳分离的CM、前β、β、α-脂蛋白。

(二)血浆脂蛋白组成

血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。游离脂肪酸与清蛋白结合而运输不属于血浆脂蛋白之列。CM最大,含甘油三酯最多,蛋白质最少,故密度最小。VLDL含甘油三酯亦多,但其蛋白质含量高于CM。LDL含胆固醇及胆固醇酯最多。HDL含蛋白质量最多。

(三)脂蛋白的结构

血浆各种脂蛋白具有大致相似的基本结构。疏水性较强的甘油三酯及胆固醇酯位于脂蛋白的核心,而载脂蛋白、磷脂及游离胆固醇等双性分子则以单分子层覆盖于脂蛋白表面,其非极性向朝内,与内部疏水性核心相连,其极性基团朝外,脂蛋白分子呈球状。CM及VLDL主要以甘油三酯为核心,LDL及HDL则主要以胆固醇酯为核心。因脂蛋白分子朝向表面的极性基团亲水,故增加了脂蛋白颗粒的亲水性,使其能均匀分散在血液中。从CM到HDL,直径越来越小,故外层所占比例增加,所以HDL含载脂蛋白,磷脂最高。

(四)载脂蛋白

脂蛋白中的蛋白质部分称载脂蛋白,主要有apoA、B、C、D、E五类。不同脂蛋白含不同的载脂蛋白。载脂蛋白是双性分子,疏水性胺基酸组成非极性面,亲水性胺基酸为极性面,以其非极性面与疏水性的脂类核心相连,使脂蛋白的结构更稳定。 (五)高脂血症

血脂高于正常人上限即为高脂血症,表现为甘油三脂、胆固醇含量升高,表现在脂蛋白上,CM、VLDL、LDL皆可升高,但HDL一般不增加。 消灭肥肉脂肪 多运动,多吃水果蔬菜,少吃油腻东西内脏等等。 代谢 1?乳糜微粒

主要功能是转运外源性甘油三酯及胆固醇。空腹血中不含CM。外源性甘油三酯消化吸收后,在小肠黏膜细胞内再合成甘油三酯、胆固醇,与载脂蛋白形成CM,经淋巴入血运送到肝外组织中,在脂蛋白脂肪酶作用下,甘油三酯被水解,产物被肝外组织利用,CM残粒被肝摄取利用。

2?极低密度脂蛋白

VLDL是运输内源性甘油三酯的主要形式。肝细胞及小肠黏膜细胞自身合成的甘油三酯与载脂蛋白,胆固醇等形成VLDL,分泌入血,在肝外组织脂肪酶作用下水解利用,水解过程中VLDL与HDL相互交换,VLDL变成IDL被肝摄取代谢,未被摄取的IDL继续变为LDL。

3?低密度脂蛋白

人血浆中的LDL是由VLDL转变而来的,它是转运肝合成的内源性胆固醇的主要形式。肝是降解LDL的主要器官,肝及其他组织细胞膜表面存在LDL受体,可摄取LDL,其中的胆固醇脂水解为游离胆固醇及脂肪酸,水解的游离胆固醇可抑制细胞本身胆固醇合成,减少细胞对LDL的进一步摄取,且促使游离胆固醇酯化在胞液中储存,此反应是在内质网脂酰CoA胆固醇脂酰转移酶(ACAT)催化下进行的。

除LDL受体途径外,血浆中的LDL还可被单核吞噬细胞系统清除。

4?高密度脂蛋白

主要作用是逆向转运胆固醇,将胆固醇从肝外组织转运到肝代谢。新生HDL释放入血后径系列转化,将体内胆固醇及其酯不断从CM、VLDL转入HDL,这其中起主要作用的是血浆卵磷脂胆固醇脂酰转移酶(LCAT),最后新生HDL变为成熟HDL,成熟HDL与肝细胞膜HDL受体结合被摄取,其中的胆固醇合成胆汁酸或通过胆汁排出体外,如此可将外周组织中衰老细胞膜中的胆固醇转运至肝代谢并排出体外。 人体脂肪

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)