偏微分和微分有什么区别?
解答:
1、dy/dx
是函数在x处的变化率;
2、(dy/dx)dx
是函数在x处的微分,也就是“变化率dy/dx”乘以“自变量的无穷小变化量dx”,
dx是对x的微分,也就是x的无穷小的增量;
(dy/dx)dx
=
dy
就是对y的微分了,也就是y的无穷小增量;
(dy/dx)dx
的整体意思就是,在x处,由于x的无穷小的增量所产生的y的无穷小增量。
这些就是通常所说的微分的概念,也就是常微分的概念。
3、在多元函数中,因为自变量至少有两个,每一个自变量的变化,都会引起函数的变化。
以三元函数
u=f(x,y,z)
为例,
u/?x表示的是由于x的单独变化而引起的函数u的变化率,或者说在x方向上的变化率;
u/?y表示的是由于y的单独变化而引起的函数u的变化率,或者说在y方向上的变化率;
u/?z表示的是由于z的单独变化而引起的函数u的变化率,或者说在z方向上的变化率。
这里的符号?,在意义上,完全等同于d,?x=dx,?y=dy,?z=dz,?u=du。
由于是多元函数,引起函数u变化的因素不止一个,为了表示区别,不用d,而用?。
4、(?u/?x)dx
表示的是由于x的单独变化dx,所引起的函数u的变化量,也就是u对x的偏微分;
(?u/?y)dy
表示的是由于y的单独变化dy,所引起的函数u的变化量,也就是u对y的偏微分;
(?u/?z)dz
表示的是由于y的单独变化dz,所引起的函数u的变化量,也就是u对z的偏微分。
5、全微分的概念(Total
Differentiation):
如果所有变量的变化都考虑进去,所有变量变化所引起的整个函数的变化,则是全微分:
du
=
(?u/?x)dx
+
(?u/?y)dy
+
(?u/?z)dz,其中的三个部分是三个偏微分。
欢迎追问。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!