百科狗-知识改变命运!
--

伺服放大器的主要功能

百变鹏仔1年前 (2023-12-21)阅读数 6#综合百科
文章标签距离样品

作用:

DKJ、DKZ等电动执行器只能强电控制。

DCS系统只能发出4-20mA弱电信号。

在执行器与系统之间配用伺服放大器,将弱电信号放大成强电信号,来控制执行器。

若将伺服放大器功能加在执行器中,即为改进型(电子式一体化)DKJ、DKZ执行器。

伺服放大器的主要功能

欧氏距离:(∑(Xi-Yi)2)1/2,即两项间的差是每个变量值差的平方和再平方根,目的是计算其间的整体距离即不相似性.我们熟悉的欧氏距离虽然很有用,但也有明显的缺点.它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求.例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性.因此,有时需要采用不同的距离函数.如果用dij表示第i个样品和第j个样品之间的距离,那么对一切i,j和k,dij应该满足如下四个条件:①当且仅当i=j时,dij=0

②dij>0

③dij=dji(对称性)

④dij≤dik+dkj(三角不等式)显然,欧氏距离满足以上四个条件.满足以上条件的函数有多种,本节将要用到的马氏距离也是其中的一种.

第i个样品与第j个样品的马氏距离dij用下式计算:

dij=(xi一xj)'S-1(xi一xj)

其中,xi和xj分别为第i个和第j个样品的m个指标所组成的向量,S为样本协方差矩阵.

马氏距离有很多优点.它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同.马氏距离还可以排除变量之间的相关性的干扰.它的缺点是夸大了变化微小的变量的作用.采用巴氏距离特征选择的迭代算法,可以获得最小错误率上界.当特征维数高时,为了减少巴氏距离特征选择计算时间,对样本先进行K-L变换,将特征降低到中间维数.然后进行巴氏距离特征选择,降低到结果的维数.用基于MNIST手写体数字库的试验表明,该文方法比单纯用巴氏距离特征选择计算时间大大减少,并比主分量方法(即单纯使用K-L变换)特征选择的错误率小得多

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)