时域频域的时域
时域是真实世界,是惟一实际存在的域。因为我们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发生。而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就是在时域中测量的。
时钟波形的两个重要参数是时钟周期和上升时间。
图中标明了1GHz时钟信号的时钟周期和10-90上升时间。下降时间一般要比上升时间短一些,有时会出现更多的噪声。
时钟周期就是时钟循环重复一次的时间间隔,通常用ns度量。时钟频率Fclock,即1秒钟内时钟循环的次数,是时钟周期Tclock的倒数。
Fclock=1/Tclock
上升时间与信号从低电平跳变到高电平所经历的时间有关,通常有两种定义。一种是10-90上升时间,指信号从终值的10%跳变到90%所经历的时间。这通常是一种默认的表达方式,可以从波形的时域图上直接读出。第二种定义方式是20-80上升时间,这是指从终值的20%跳变到80%所经历的时间。
时域波形的下降时间也有一个相应的值。根据逻辑系列可知,下降时间通常要比上升时间短一些,这是由典型CMOS输出驱动器的设计造成的。在典型的输出驱动器中,p管和n管在电源轨道Vcc和Vss间是串联的,输出连在这个两个管子的中间。在任一时间,只有一个晶体管导通,至于是哪一个管子导通取决于输出的高或低状态。
1、复频域也称拉氏域,与时域有对应关系。
时域线性常微分方程经过拉氏变换到拉氏域,而拉氏域方程可在一定初始条件下经过逆拉氏变换转回时域方程。
2、时域和频域的关系及转换
时域分析与频域分析是对模拟信号的两个观察面。时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。
一般来说,时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。目前,信号分析的趋势是从时域向频域发展。然而,它们是互相联系,缺一不可,相辅相成的。
动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。时域越宽,频域越短。
s(f) = ∫-∞?+∞?(s(t)·e)dt
sD(t)= dS(t)/dt
sD(f)= ∫-∞?(sD(t)·e-j2∏ft)dt=j·2∏f· s(f)
3、s平面是进行拉氏转换后复平面的名称。 s平面是数学模型,可以不用处理时域下时间为基础的函数,改为处理频域下的方程式,在工程及物理学上是图象式的分析工具。
扩展资料:
1、频域波形:
(1)频域中的任何波形都可以由正弦波的组合完全且惟一地描述。
(2)任何两个频率不同的正弦波都是正交的。如果将两个正弦波相乘并在整个时间轴上求积分,则积分值为零。这说明可以将不同的频率分量相互分离开。
(3)正弦波有精确的数学定义。
(4)正弦波及其微分值处处存在,没有上下边界。
2、时域波形:
两个重要参数是时钟周期和上升时间。
上升时间与信号从低电平跳变到高电平所经历的时间有关,通常有两种定义。一种是10-90上升时间,指信号从终值的10%跳变到90%所经历的时间。
这通常是一种默认的表达方式,可以从波形的时域图上直接读出。第二种定义方式是20-80上升时间,这是指从终值的20%跳变到80%所经历的时间。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!