关于太空的资料(英文)
Outer space
"Deep space" redirects here. For the NASA space probes, see Deep Space 1 and Deep Space 2.
Layers of Atmosphere - not to scale (NOAA)Outer space, also simply called space, refers to the relatively empty regions of the universe outside the atmospheres of celestial bodies. Outer space is used to distinguish it from airspace (and terrestrial locations). Contrary to popular understanding, outer space is not completely empty but contains a low density of particles, predominantly hydrogen gas as well as electromagnetic radiation.
Earth's boundary
There is no discrete boundary between the Earth's atmosphere and space as the atmosphere gradually attenuates with increasing altitude. If the atmosphere had a constant temperature, its pressure would decrease exponentially from a sea-level value of 100 kPa (1 bar) toward its final value of zero. The Federation Aeronautique Internationale has established the Kármán line at an altitude of 100 km (62 miles) as a working definition for the boundary between atmosphere and space. The United States designates people who travel above an altitude of 50 miles (80 km) as astronauts. During re-entry, 400,000 feet (75 miles or 120 km) marks the boundary where atmospheric drag becomes noticeable.
[edit]
Solar System
Outer space within the solar system is called interplanetary space, which passes over into interstellar space at the heliopause. The vacuum of outer space is not really empty; it is sparsely filled with several dozen organic molecules discovered to date by microwave spectroscopy. According to the Big bang theory,2.7 K blackbody radiation was left over from the 'big bang' and the origin of the universe, and cosmic rays, which include ionized atomic nuclei and various subatomic particles. There is also gas, plasma and dust, and small meteors and material left over from previous manned and unmanned launches that are a potential hazard to spacecraft. Some of this debris re-enters the atmosphere periodically.
The absence of air makes outer space (and the surface of the Moon) ideal locations for astronomy at all wavelengths of the electromagnetic spectrum, as evidenced by the spectacular pictures sent back by the Hubble Space Telescope, allowing light from about 14 billion years ago, back almost to the time of the Big Bang to be observed. Pictures and other data from unmanned space vehicles have provided invaluable information about the planets, asteroids and comets in our solar system.
[edit]
Pressure variance
Going from sea level to outer space produces a pressure difference of only about 15 lbf/sq in, equal to surfacing from an underwater depth of about 34 ft (10 m).
[edit]
Vacuum
Contrary to popular belief a person suddenly exposed to the vacuum would not explode, but it would take a matter of milliseconds for a person to freeze to death. Water vapor would start to boil off from exposed areas such as the cornea of the eye, and along with oxygen, from membranes inside the lungs. Here is NASA's explanation.
[edit]
Satellites
There are many artificial satellites orbiting the Earth, including geosynchronous communication satellites 35,786 km (22,241 miles) above mean sea level at the Equator. Their orbits never "decay" because there is almost no matter there to exert frictional drag. There is also increasing reliance, for both military and civilian uses, of satellites which enable the Global Positioning System (GPS). A common misconception is that people in orbit are outside Earth's gravity because they are obviously "floating". They are floating because they are in "free fall": the force of gravity and their linear velocity is creating an inward centripetal force which is stopping them from flying out into space. Earth's gravity reaches out far past the Van Allen belt and keeps the Moon in orbit at an average distance of 384,403 km (238,857 miles). The gravity of all celestial bodies drops off toward zero with the inverse square of the distance.
[edit]
Milestones on the way to space
Sea level - 100 kPa (1 atm; 1 bar; 760 mm Hg; 14.5 lbf/in?) of atmospheric pressure
4.6 km (15,000 ft) - FAA requires supplemental oxygen for aircraft pilots and passengers.
5.0 km (16,000 ft) - 50 kPa of atmospheric pressure
5.3 km (17,400 ft) - Half of the Earth's atmosphere is below this altitude.
8.8 km (29,035 ft) - Summit of Mount Everest, the highest mountain on Earth
16 km (52,500 ft) - Pressurized cabin or pressure suit required.
18 km (59,000 ft) - Boundary between troposphere and stratosphere
20 km (65,600 ft) - Water at room temperature boils without a pressurized container. (The popular notion that bodily fluids would start to boil at this point is false because the body generates enough internal pressure to prevent it.)
24 km (78,700 ft) - Regular aircraft pressurization systems no longer function.
32 km (105,000 ft) - Turbojets no longer function.
34.7 km (113,740 ft) - Altitude record for manned balloon flight
45 km (148,000 ft) - Ramjets no longer function.
50 km (164,000 ft) - Boundary between stratosphere and mesosphere
80 km (262,000 ft) - Boundary between mesosphere and thermosphere
100 km (328,084 ft) - Kármán line, defining the limit of outer space according to the Fédération Aéronautique Internationale. Aerodynamic surfaces no longer function from lack of significant atmospheric density.
120 km (400,000 ft) - First noticeable atmospheric drag during re-entry from orbit
200 km - Lowest possible orbit with short-term stability (stable for a few days)
350 km - Lowest possible orbit with long-term stability (stable for many years)
690 km - Boundary between thermosphere and exosphere
[edit]
Regions of outer space
Cislunar space
Interplanetary space
Interstellar medium
Intergalactic space
[edit]
Space does not equal orbit
To perform an orbital space flight, a spacecraft must go higher and faster than for a sub-orbital space flight. A spacecraft has not made orbit until it is circling the Earth at a sufficiently great speed such that the weight of the spacecraft is exactly equal to the centripetal acceleration required to keep it in a circular orbit (see circular motion). It must not only rise above the atmosphere, but must also achieve a sufficient orbital speed (angular velocity). For a low Earth orbit, this is about 7.9 km/s (18,000 mph). Konstantin Tsiolkovsky was the first to realize that, given the energy available from any available chemical fuel, a several-stage rocket would be required. The escape velocity to pull free of Earth’s gravitational field altogether and move into interplanetary space is about 40,000 km/h (25,000 mph or 11,000 m/s). The energy required to reach velocity for low Earth orbit (32 MJ/kg) is about twenty times the energy required simply to climb to the corresponding altitude (10 kJ/(km·kg)).
There is a major difference between sub-orbital and orbital space flights. Minimal altitude for a stable orbit around the Earth, without excessive atmospheric drag, begins at around 350 km (220 miles) above mean sea level. A common misunderstanding about the boundary to space is that orbit occurs simply by reaching this altitude. Achieving orbital speed can theoretically occur at any altitude, although atmospheric drag precludes an orbit that is too low. At sufficient speed, an airplane would need a way to keep it from flying off into space, but at present, this speed is several times greater than anything within reasonable technology.
什么是空侧与陆侧?具体包含什么内容?
美国道林大学(Dowling College)成立于1955年,是经中国教育部认证、中国驻美国纽约领馆认证、美国中部国家高等教育委员会认证、美国联邦航空局(FAA)认证、国际高等商业教育联盟(IACBE)认证、全美国家教师教育认证协会(NCATE)认证的综合性大学。可授予博士学位、硕士学位及学士学位。道林有航空学院、文理学院、教育学院和商学院在内四个学院。采用小班教学,每班平均15人,师生比为1∶17。其中94%的教师拥有博士学位或所教学领域最高学历。道林有两个校区和一个中心,主校区位于美丽的纽约州长岛,距离曼哈顿只有50英里路程。根据2013年美国新闻与世界报道,美国道林大学是美国区域性最好的大学之一。航空学院
道林大学航空学院是全美仅有的23所被列入美国联邦航空局(FAA)认证的学校之一。学生在道林参加飞行训练课程,即可在本校考取美国联邦航空管理局(FAA)商业及私人飞行执照。
航空学院拥有雄厚的教学资源,自有飞机场和十多架飞机的大型飞行队(包括9架?勇士?飞机、一架?飞箭?机、和双引擎?米诺?飞机),是全球高校中唯一拥有全景飞行舱的学校。道林大学配备全球最先进教学设备,包括:最先进的三部FRASCA飞行模拟器,可供一周七天每天24小时使用。同时道林还获得美国航天局(NASA)拨款建造的一个目前最先进的虚拟机场运作系统地面模拟器,可以模拟全球不同的航空港系统、车道、停机坪和滑行道,以训练在不同的地形和环境下的飞行和指挥任务的实际操作经验。
道林大学航空学院毕业生在职场上是炙手可热的高薪阶层。航空领域除了飞行员外还有商业航空、机场管理、空中交通管理和空运及航天科研、管理等许多令人兴奋的职业选择。我们的课程为学生在航空领域择业做好了充分的准备。
住宿及生活
学生公寓位于校区,包括1-3居室的多种选择,公寓含地毯、空调、床、桌椅、衣柜及厨房的全套设备,每个房间装有宽带及有线电视接口,校区外也有热情的住宿家庭可以选择。学校为学生提供校区间穿梭的免费班车。
在这里,学生的课外生活也将丰富精彩,学院有超过29个俱乐部、社团及组织,每年都有不同主题的活动和艺术巡演。道林大学是全美大学生篮球联赛(NCAA)的第二分赛区及东岸联盟会员,学生可参加全美的篮球、越野赛、曲棍球、足球和网球等比赛。
图书馆
鲁道夫校区及布鲁克海文校区提供全方位阅览服务,图书馆参考文献和藏书超过222920册供学生使用。
学生服务
美国道林大学提供完善的国际留学生服务体系。留学期间学校为每位留学生配有学业顾问、心理顾问和学习技能顾问,我们也有专职的留学生辅导员,负责机场接机,安排住宿,英文强化、生活协助等不间断的服务。相信一定会帮助你尽快溶入美国生活,圆满完成学业,实现梦想。
美国道林大学是一个非常人性化的学校,不论您来自那里,不论您的背景如何,这里是一个充满乐趣和友谊的美国高等学府,伴您走上成功之路。
空侧陆侧这两个词一般出现在机场控制区,空侧指飞行器区域 ,机场内旅客和其他公众不能自由进入的地区。陆侧是机场内旅客和其他公众可以自由进入的地区。对候机建筑物而言,通常以登机旅客的安全检查口为界。
AAM是一整套新兴航空技术的统称,它能够为旅客和货物在本地、城市和地区范围内提供新的空中运输方式。作为AAM的类型之一,本文将重点介绍UAM(城市空中交通)及其空域和空侧问题。
L&BLab今后还会研究AAM的其他领域。UAM是指在城市建成区内所有的空中运输方式,包括传统的直升机和电动飞机。传统直升机运营在20世纪初就开始了。
但是由于高昂的运营成本和巨大的噪声问题,直升机运输始终未能成为城市空中交通的主流选项。近些年,电池技术的发展吸引了一批发明家、工程师和投资人,他们的共同目标是将电动飞机引入这一市场。目前全世界有超过200种电动飞机正在开发中。
与直升机相比,预期能够实现更低的运营成本和更安静的操作环境。目前,部分电动飞机制造商已与FAA(美国联邦航空局)针对商业运营的认证要求达成了一致意见,多样化的UAM服务已触手可及。在投资人。
地方政府、以及飞机制造商的共同推动下,已有多家UAM运营商宣布将在未来3-4年推出使用垂直起降电动飞行器(eVTOL、下称“电动飞机”)的服务。因此各城市和地方政府现在已有必要行动起来。
为辖区内未来的UAM运营环境制定政策和拟定规划。NASA(美国宇航局)根据运量、自动化水平和空中管理水平提出了六个UAM成熟度等级。本文重点介绍其中。
第一、第二等级(下称“UML1和UML2”)。这两类基础等级代表在受控环境下,由飞行员操作的低密度运行,预计在未来5-10年间可以实现。在UAM服务落地的众多必要因素中,最重要的三个因素分别是飞行器。配套设施、空域结构与管理。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!