百科狗-知识改变命运!
--

定理 引理和公理的区别

桃子1年前 (2023-12-23)阅读数 8#综合百科
文章标签大数定律

公理和定理的区别主要在于:公理的正确性不需要用逻辑推理来证明,而定理的正确性需要逻辑推理来证明。在物理学中而定理是通过数学工具(如微积分)推理得来的,如动能定理;定律是由实验得出或验证的,如机械能守恒定律。

原理与定理极其近似但又稍有区别,原理只要求用自然语言表达(当然并不排除数学表达),定理则着重于反映原理的数学性。因此,在表达时一定要用数学式来阐明,如“帕斯卡原理”:在密闭容器内,液体向各个方向传递的压强相等。

定理是建立在公理和假设基础上,经过严格的推理和证明得到的,它能描述事物之间内在关系,定理具有内在的严密性,不能存在逻辑矛盾

定理 引理和公理的区别

概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 数定律(law of large numbers),又称大数定理[1],是一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,虽然通常最常见的称呼是大数“定律”,但是大数定律并不是经验规律,而是严格证明了的定理。

有些随机事件无规律可循,但不少是有规律的,这些“有规律的随机事件” 数学家伯努利在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。确切的说大数定律是以确切的数学形式表达了大量重复出现的随机现象的统计规律性,即频率的稳定性和平均结果的稳定性,并讨论了它们成立的条件。[2]

通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一。这种情况下,偶然中包含着必然。必然的规律与特性在大量的样本中得以体现。

简单地说,大数定理就是“当试验次数足够多时,事件发生的频率无穷接近于该事件发生的概率”。该描述即伯努利大数定律。

该定律的含义是:当n很大,服从同一分布的随机变量的算术平均数将依概率接近于这些随机变量的数学期望。

将该定律应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据

该定律是切贝雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。

在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。

对于一般人来说,大数定律的非严格表述是这样的:X_1,...,X_n是独立同分布随机变量序列,均值为u,S_n=X_1+...+X_n,则S_n/n收敛到u.

如果说“弱大数定律”,上述收敛是指依概率收敛(in probability),如果说“强大数定律”,上述收敛是指几乎必然收敛(almost surely/with probability one)。

大数定律通俗一点来讲,就是样本数量很大的时候,样本均值和真实均值充分接近。这一结论与中心极限定理一起,成为现代概率论、统计学、理论科学和社会科学的基石之一,重要性在本人看来甚至不弱于微积分。(有趣的是,虽然大数定律的表述和证明都依赖现代数学知识,但其结论最早出现在微积分出现之前。而且在生活中,即使没有微积分的知识也可以应用。例如,没有学过微积分的学生也可以轻松利用excel或计算器计算样本均值等统计量,从而应用于社会科学。)

最早的大数定律的表述可以追溯到公元1500年左右的意大利数学家Cardano。1713年,著名数学家James (Jacob) Bernouli正式提出并证明了最初的大数定律。不过当时现代概率论还没有建立起来,测度论、实分析的工具还没有出现,因此当时的大数定律是以“独立事件的概率”作为对象的。后来,历代数学家如Poisson(“大数定律”的名字来自于他)、Chebyshev、Markov、Khinchin(“强大数定律”的名字来自于他)、Borel、Cantelli等都对大数定律的发展做出了贡献。直到1930年,现代概率论奠基人、数学大师Kolgomorov才真正证明了最后的强大数定律。

下面均假设X, X_1,...,X_n是独立同分布随机变量序列,均值为u。独立同分布随机变量和的大数定律常有的表现形式有以下几种。

初等概率论

(1). 带方差的弱大数定律:若E(X^2)小于无穷,则S_n/n-u依概率收敛到0。

证明方法:Chebyshev不等式即可得到。这个证明是Chebyshev给出的。

(2). 带均值的弱大数定律:若u存在,则S_n/n-u依概率收敛到0。

证明方法:用Taylor展开特征函数,证明其收敛到常数,得到依分布收敛,然后再用依分布收敛到常数等价于依概率收敛。

现代概率论

(3). 精确弱大数定律:若xP(|X|>x) 当x趋于无穷时收敛到0,则S_n/n-u_n依概率收敛到0,其中u_n=E[X 1_{|X|1阶矩条件->没矩条件;强大数定律:4阶矩条件->2阶矩条件->1阶矩条件),证明也就变得越难。

虽然只有(3)和(6)是最精确的结果,但是必须认识到,数学的发展是一个循序渐进的过程,如果没有前面那些更强条件下的定理,也无法得到最后的大数定律。从最开始的自然界观察到大数定律的存在,到最后证明最终形式,历时数百年,现代概率论也在这个过程中建立起来。此外,虽然(3)和(6)比前面的(1)和(5)强很多,但是(1)和(5)的条件仅仅是2阶矩(或方差)的存在,因此他们在几百年间早就被广泛使用,对于一般的社会科学问题、统计问题等已经足足够用了。

总之,大数定律包含概率论里核心的知识。“大数定律的四种证法”尽管表述模糊,原意也充满调侃,但并不是真如《孔乙己》里"回字四种写法"所暗示的那样迂腐或毫无价值。作为概率或统计专业的研究生,弄懂这些定理表述的区别和证明方法的区别和联系,了解前代数学家的工作,对于深刻理解现代概率论是很有好处的。当然,任何人也不应去死记硬背这些证法(我自己也记不住这些证法),只要能理解、弄清其中微妙即可。

编辑本段相关数学家拉普拉斯

拉普拉斯,1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,曾任巴黎军事学院数学教授,1795年任巴黎综合工科学校教授,后又在高等师范学校任教授。1799年他还担任过法国经度局局长,并在拿破仑政府中任过6个星期的内政部长,1816年被选为法兰西学院院士,1817年任该院院长,1827年3月5日卒于巴黎。

拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的拉普拉斯变换、拉普拉斯定理和拉普拉斯方程,在科学技术的各个领域有着广泛的应用。[4]

德莫佛

德莫佛,法文原名 Abraham de Moivre,(1667.05.26法国-1754.11.27英国伦敦),法国数学家。德莫佛对数学最著名的贡献是德莫佛公式(de Moivre Formula)和德莫佛-拉普拉斯中心极限定理,以及他对正态分布和概率理论的研究。德莫佛还写了一本概率理论的教科书,The Doctrine of Chances,据说这本书被投机主义者(gambler)高度赞扬。德莫佛是解析几何和概率理论的先驱之一;他还最早发现了一个二项分布的近似公式,这一公式被认为是正态分布的首次露面

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)