百科狗-知识改变命运!
--

host是什么意思,有什么用?

百变鹏仔1年前 (2023-12-23)阅读数 8#综合百科
文章标签域名服务器

Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应网页,如果没有找到,则系统再会将网址提交DNS域名解析服务器进行IP地址的解析。

Hosts文件的工作方式和具体作用

现在来看一下Hosts文件的工作方式以及它在具体使用中起哪些作用。

1、加快域名解析

host是什么意思,有什么用?

对于要经常访问的网站,我们可以通过在Hosts中配置域名和IP的映射关系,提高域名解析速度。由于有了映射关系,当我们输入域名计算机就能很快解析出IP,而不用请求网络上的DNS服务器。

2、方便局域网用户

在很多单位的局域网中,会有服务器提供给用户使用。但由于局域网中一般很少架设DNS服务器,访问这些服务器时,要输入难记的IP地址。这对不少人来说相当麻烦。现在可以分别给这些服务器取个容易记住的名字,然后在Hosts中建立IP映射,这样以后访问的时候,只要输入这个服务器的名字就行了。

3、屏蔽网站

现在有很多网站不经过用户同意就将各种各样的插件安装到你的计算机中,其中有些说不定就是木马或病毒。对于这些网站我们可以利用Hosts把该网站的域名映射到错误的IP或本地计算机的IP,这样就不用访问了。在WINDOWSX系统中,约定127.0.0.1为本地计算机的IP地址, 0.0.0.0是错误的IP地址。

如果,我们在Hosts中,写入以下内容:

5分钟教你搞懂 DNS

 通俗来解释dns的意思的话,它就是一个域名系统。因特网上作为域名和IP地址相互映射的一个分布式数据库。下面是我给大家整理的dns是什么意思通俗点,供大家参阅!

dns是什么意思通俗讲

 DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。通过主机名,最终得到该主机名对应的IP地址的过程叫做域名解析(或主机名解析)。DNS协议运行在UDP协议之上,使用端口号53。在RFC文档中RFC 2181对DNS有规范说明,RFC 2136对DNS的动态更新进行说明,RFC 2308对DNS查询的反向缓存进行说明。

DNS查询方法

 查询DNS服务器上的资源记录

 在Windows平台下,使用命令行工具,输入nslookup,返回的结果包括域名对应的IP地址(A记录)、别名(CNAME记录)等。除了以上方法外,还可以通过一些DNS查询站点如国外的国内的 查询域名的DNS信息。

 常用的资源记录类型

 A 地址 此记录列出特定主机名的 IP 地址。这是名称解析的重要记录。

 CNAME 标准名称 此记录指定标准主机名的别名。

 MX邮件交换器此记录列出了负责接收发到域中的电子邮件的主机。

 NS名称服务器此记录指定负责给定区域的名称服务器。

 FQDN名的解析过程查询

 若想跟踪一个FQDN名的解析过程,在LinuxShell下输入dig www +trace,返回的结果包括从根域开始的递归或迭代过程,一直到权威域名服务器。

 GeniePro DNS 应对DNS劫持和DNS缓存中毒攻击的关键性机制:一致性检查

 每个Geniepro节点将自身的DNS记录发送给工作组内其他节点请求一致性检查;

 每个Geniepro节点将自身的记录与收到的记录进行比较;

 每个Geniepro工作组的通信协调节点将获得的DNS记录更新发送给其他组的通信协调节点请求一致性检查;

 每个Genipro工作组的通信协调节点向上一级DNS服务器请求更新记录并与收到的其他通信协调节点的记录进行比较。

 一致性仲裁

 如果一致性检查发现记录不一致情况,则根据策略(少数服从多数、一票否决等)决定是否接受记录的变化 根据结果,各Geniepro节点将自身记录进行统一 通信协调节点选举 选举出的通信协调节点在任期内具有更新组内节点的权限 选举过程满足不可预测性和不可重复性DNS资源记录 如前所述,每个 DNS 数据库都由资源记录构成。一般来说,资源记录包含与特定主机有关的信息,如 IP 地址、主机的所有者或者提供服务的类型。

DNS配置举例

 静态域名解析配置举例

 拓扑图

 如右图静态域名解析配置组网图所示:

 应用需求

 由于网络设备R-A经常访问域名为destination.com的主机,可利用静态域名解析功能,实现通过destination.com主机名访问IP地址为1.1.1.20的主机,提高域名解析的效率。

 配置要点

 1. 确保设备和主机间路由可达

 2. 主机名和IP地址间的映射正确

 配置步骤

 手工配置主机名和IP地址间的映射;本例中,配置主机名为destination.com其对应IP地址为1.1.1.20

 R-A(config)#ip host destination.com 1.1.1.20

 配置验证

 第一步,查看域名解析信息;关注点主机、IP地址间的映射关系是否正确。

 R-A# show host

 Name servers are:

 Host type Address TTL(sec)

 destination.com static 1.1.1.20 ---

 第二步,使用ping destination.com命令,查看执行结果。

 R-A# ping destination.com

 Translating "destination.com"...[OK]

 Sending 5, 100-byte ICMP Echoes to 1.1.1.20, timeout is 2 seconds:

 

 !!!!!

 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

 从以上显示信息可以看出,R-A通过静态域名解析,成功实现通过destination.com主机名访问IP地址为1.1.1.20的主机。

 动态域名解析配置举例

 拓扑图

 如右图动态域名解析配置组网图所示。

 应用需求

 1. DNS域名服务器的IP地址为192.168.31.206/24。

 2. 网络设备为DNS客户端,通过动态域名解析功能,实现通过host.com主机名访问IP地址为10.1.1.2的主机。

 配置要点

 1. DNS客户端和DNS服务器端、访问主机间的路由要可达

 2. DNS域名解析开关打开。域名解析功能开关默认开启。

 3. 正确配置DNS域名服务器的IP地址

 配置步骤

 第一步,配置DNS域名服务器

 不同域名服务器的配置方法不同,请根据实际情况搭建DNS服务器。具体方法在此不做具体说明。

 在DNS服务器上添加主机和IP地址的映射。本例中,设置主机名:host.com;IP地址为10.1.1.2/24

 第二步,配置DNS客户端

 DNS客户端和DNS服务器端、访问主机间的路由要可达。接口IP配置如拓扑图所示。具体配置过程此处省略。

 !打开DNS域名解析功能开关;该功能默认开启

 R(config)#ip domain-lookup

 !配置域名服务器的IP地址为192.168.31.206

 R(config)#ip name-server 192.168.31.206

 配置验证

 第一步,使用ping host.com命令,查看执行结果。

 R# ping host.com

 Translating " host.com "...[OK]

 Sending 5, 100-byte ICMP Echoes to 10.1.1.2, timeout is 2 seconds:

 

 !!!!!

 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

 从以上显示信息可以看出,客户端设备能ping通主机,且对应的目的IP地址为10.1.1.2。设备通过动态域名解析,成功实现通过host.com主机名访问IP地址为10.1.1.2的主机。

 第二步,查看域名解析信息;关注点主机名、主机IP地址。

 R# show host

 Name servers are:

 192.168.31.206 static

 Host type Address TTL(sec)

 host.com dynamic 10.1.1.2 3503

 从以上显示信息可以看出,主机名同主机IP地址的映射表项正确。

DNS也叫网域名称系统,是互联网的一项服务。它实质上是一个域名和IP相互映射的分布式数据库,有了它,我们就可以通过域名更方便的访问互联网。

DNS特点有分布式的,协议支持TCP和UDP,常用端口是53,每一级域名的长度限制是63,域名总长度限制是253。

最早的时候,DNS的UDP报文上限大小是512字节,所以当某个response大小超过512(返回信息太多),DNS服务就会使用TCP协议来传输。后来DNS协议扩展了自己的UDP协议,DNS client发出查询请求时,可以指定自己能接收超过512字节的UDP包,这种情况下,DNS还是会使用UDP协议。

分层的数据库结构:

DNS的结构跟Linux文件系统很相似,像一棵倒立的树。下面用站长之家的域名举例:最上面的.是根域名,接着是顶级域名,再下来是站长之家域名chinaz依次类推。使用域名时,从下而上。s.tool.chinaz就是一个完整的域名,www.chinaz也是。

之所以设计这样复杂的树形结构,是为了防止名称冲突。这样一棵树结构,当然可以存储在一台机器上,但现实世界中完整的域名非常多,并且每天都在新增、删除大量的域名,存在一台机器上,对单机器的存储性能就是不小的挑战。

另外,集中管理还有一个缺点就是管理不够灵活。可以想象一下,每次新增、删除域名都需要向中央数据库申请是多么麻烦。所以现实中的DNS都是分布式存储的。

根域名服务器只管理顶级域,同时把每个顶级域的管理委派给各个顶级域,所以当你想要申请下的二级域名时,找域名注册中心就好了。二级域名,再向下的域名就归你管理了。

当你管理http://chinaz的子域名时,你可以搭建自己的nameserver,在注册中心把//chinaz的管理权委派给自己搭建的nameserver。自建nameserver和不自建的结构图如下:

一般情况下,能不自建就不要自建,因为维护一个高可用的DNS也并非容易。据我所知,有两种情况需要搭建自己的nameserver:

搭建对内的DNS。公司内部机器众多,通过ip相互访问太过凌乱,这时可以搭建对内的nameserver,允许内部服务器通过域名互通。公司对域名厂商提供的nameserver性能不满意。

虽然顶级域名注册商都有自己的nameserver,但注册商提供的nameserver并不专业,在性能和稳定性上无法满足企业需求,这时就需要企业搭建自己的高性能nameserver,比如增加智能解析功能,让不同地域的用户访问最近的IP,以此来提高服务质量。

概括一下DNS的分布式管理,当把一个域委派给一个nameserver后,这个域下的管理权都交由此nameserver处理。这种设计一方面解决了存储压力,另一方面提高了域名管理的灵活性。

顶级域名像这样的顶级域名,由ICANN严格控制,是不允许随便创建的。顶级域名分两类:通用顶级域名,国家顶级域名。

通用顶级域名常见的如、.org、.edu等,国家顶级域名如我国的.cn,美国的.us。一般公司申请公网域名时,如果是跨国产品,应该选择通用顶级域名。

如果没有跨国业务,看自己喜好(可以对比各家顶级域的服务、稳定性等再做选择)。这里说一下几个比较热的顶级域,完整的顶级域参见维基百科。

meme顶级域其实是国家域名,是黑山共和国的国家域名,只不过它对个人开发申请,所以很多个人博主就用它作为自己的博客域名。

io很多开源项目常用io做顶级域名,它也是国家域名。因为io与计算机中的input/output缩写相同,和计算机的二机制10也很像,给人一种geek的感觉。相较于.域名,.io下的资源很多,更多选择。

DNS解析流程:

聊完了DNS的基本概念,我们再来聊一聊DNS的解析流程。当我们通过浏览器或者应用程序访问互联网时,都会先执行一遍DNS解析流程。

标准glibc提供了libresolv.so.2动态库,我们的应用程序就是用它进行域名解析(也叫resolving)的,它还提供了一个配置文件/etc/nsswitch.conf来控制resolving行为,配置文件中最关键的是这行:

hosts:files dns myhostname。

它决定了resolving的顺序,默认是先查找hosts文件,如果没有匹配到,再进行DNS解析。默认的解析流程如下图:

上图主要描述了client端的解析流程,我们可以看到最主要的是第四步请求本地DNS服务器去执行resolving,它会根据本地DNS服务器配置,发送解析请求到递归解析服务器(稍后介绍什么是递归解析服务器),本地DNS服务器在/etc/resolv.conf中配置。下面我们再来看看服务端的resolving流程:

我们分析一下解析流程:

客户端向本地DNS服务器(递归解析服务器)发出解析//tool.chinaz域名的请求,本地dns服务器查看缓存,是否有缓存过//tool.chinaz域名,如果有直接返回给客户端;如果没有执行下一步。

本地dns服务器向根域名服务器发送请求,查询顶级域的nameserver地址,拿到域名的IP后,再向 nameserver发送请求,获取chinaz域名的nameserver地址。

继续请求chinaz的nameserver,获取tool域名的地址,最终得到了//tool.chinaz的IP,本地dns服务器把这个结果缓存起来,以供下次查询快速返回。

本地dns服务器把把结果返回给客户端,递归解析服务器vs权威域名服务器,我们在解析流程中发现两类DNS服务器,客户端直接访问的是递归解析服务器,它在整个解析过程中也最忙。它的查询步骤是递归的,从根域名服务器开始,一直询问到目标域名。

递归解析服务器通过请求一级一级的权威域名服务器,获得下一目标的地址,直到找到目标域名的权威域名服务器,简单来说:递归解析服务器是负责解析域名的,权威域名服务器,是负责存储域名记录的。

递归解析服务器一般由ISP提供,除此之外也有一些比较出名的公共递归解析服务器,如谷歌的8.8.8.8,联通的114,BAT也都有推出公共递归解析服务器,但性能最好的应该还是你的ISP提供的,只是可能会有DNS劫持的问题。

缓存,由于整个解析过程非常复杂,所以DNS通过缓存技术来实现服务的鲁棒性。当递归nameserver解析过//tool.chianaz域名后,再次收到//tool.chinaz查询时,它不会再走一遍递归解析流程,而是把上一次解析结果的缓存直接返回。

并且它是分级缓存的,也就是说,当下次收到的是//www.chinaz的查询时,由于这台递归解析服务器已经知道//chinaz的权威nameserver,所以它只需要再向//chinaz nameserver发送一个查询www的请求就可以了。

根域名服务器的地址是固定的,目前全球有13个根域名解析服务器,这13条记录持久化在递归解析服务器中:

为什么只有13个根域名服务器呢,不是应该越多越好来做负载均衡吗?之前说过DNS协议使用了UDP查询,由于UDP查询中能保证性能的最大长度是512字节,要让所有根域名服务器数据能包含在512字节的UDP包中,根服务器只能限制在13个,而且每个服务器要使用字母表中单字母名。

智能解析,就是当一个域名对应多个IP时,当你查询这个域名的IP,会返回离你最近的IP。由于国内不同运营商之间的带宽很低,所以电信用户访问联通的IP就是一个灾难,而智能DNS解析就能解决这个问题。

智能解析依赖EDNS协议,这是google起草的DNS扩展协议,修改比较简单,就是在DNS包里面添加origin client IP,这样nameserver就能根据client IP返回距离client比较近的server IP了。

国内最新支持EDNS的就是DNSPod了,DNSPod是国内比较流行的域名解析厂商,很多公司会把域名利用DNSPod加速。

一般我们要注册域名,都要需要找域名注册商,比如说我想注册//hello,那么我需要找域名注册商注册hello域名。的域名注册商不止一家,这些域名注册商也是从ICANN拿到的注册权,参见如何申请成为.域名注册商。

域名注册商都会自建权威域名解析服务器,比如你在狗爹上申请一个.下的二级域名,你并不需要搭建nameserver,直接在godaddy控制中心里管理你的域名指向就可以了,原因就是你新域名的权威域名服务器默认由域名注册商提供。

当然你也可以更换,比如从godaddy申请的境外域名,把权威域名服务器改成DNSPod,一方面加快国内解析速度,另一方面还能享受DNSPod提供的智能解析功能。

用bind搭建域名解析服务器,由于网上介绍bind搭建的文章实在太多了,我就不再赘述了,喜欢动手的朋友可以网上搜一搜搭建教程,一步步搭建一个本地的nameserver玩一玩。这里主要介绍一下bind的配置文件吧。

bind的配置文件分两部分,bind配置文件和zone配置文件,bind配置文件位于/etc/named.conf,它主要负责bind功能配置,如zone路径、日志、安全、主从等配置其中最主要的是添加zone的配置以及指定zone配置文件。

开启递归解析功能,这个如果是no,那么此bind服务只能做权威解析服务,当你的bind服务对外时,打开它会有安全风险,如何防御不当,会让你的nameserver被hacker用来做肉鸡zone的配置文件在bind配置文件中指定,下图是一份简单的zone配置:

zone的配置是nameserver的核心配置,它指定了DNS资源记录,如SOA、A、CNAME、AAAA等记录,各种记录的概念网上资料太多,我这里就不重复了。其中主要讲一下SOA和CNAME的作用。

SOA记录表示此域名的权威解析服务器地址。上文讲了权威解析服务器和递归解析服务器的差别,当所有递归解析服务器中有没你域名解析的缓存时,它们就会回源来请求此域名的SOA记录,也叫权威解析记录。

CNAME的概念很像别名,它的处理逻辑也如此。一个server执行resloving时,发现name是一个CNAME,它会转而查询这个CNAME的A记录。一般来说,能使用CNAME的地方都可以用A记录代替,它是让多个域名指向同一个IP的一种快捷手段。

这样当最低层的CNAME对应的IP换了之后,上层的CNAME不用做任何改动。就像我们代码中的硬编码,我们总会去掉这些硬编码,用一个变量来表示,这样当这个变量变化时,我们只需要修改一处。

配置完之后可以用named-checkconf和named-checkzone。两个命令来check我们的配置文件有没有问题,之后就可以启动bind服务了:$>service named start,Redirecting to/bin/systemctl restart named.service。

我们用netstat-ntlp,来检查一下服务是否启动,53端口已启动,那么我们测试一下效果,用dig解析一下域名,使用127.0.0.1作为递归解析服务器。

我们看到dig的结果跟我们配置文件中配置的一样是1.2.3.4,DNS完成了它的使命,根据域名获取到IP。用DNS实现负载均衡,一个域名添加多条A记录,解析时使用轮询的方式返回随机一条,流量将会均匀分类到多个A记录。www IN A1.2.3.4,www IN A1.2.3.5。

其实每次DNS解析请求时,nameserver都会返回全部IP,如上面配置,它会把1.2.3.4和1.2.3.5都返回给client端。那么它是怎么实现RR的呢?nameserver只是每次返回的IP排序不同,客户端会把response里的第一个IP用来发请求。DNS负载均衡vs LVS专业负载均衡。

和LVS这种专业负载均衡工具相比,在DNS层做负载均衡有以下特点:实现非常简单,默认只能通过RR方式调度,DNS对后端服务不具备健康检查。

DNS故障恢复时间比较长(DNS服务之间有缓存),可负载的rs数量有限(受DNS response包大小限制),真实场景中,还需要根据需求选择相应的负载均衡策略子域授权。

我们从.域下申请一个二级域名http://hello.后,发展到某一天我们的公司扩大了,需要拆分两个事业部A和B,并且公司给他们都分配了三级域名a.hello.和b.hello.,域名结构如下图:

再发展一段时间,A部门和B部门内部业务太多,需要频繁的为新产品申请域名,这个时候他们就想搭建自己的namserver,并且需要上一级把相应的域名管理权交给自己,他们期望的结构如下:

注意第一阶段和第二阶段的区别:第一阶段,A部门想申请//a.hello下的子域名,需要向上级申请,整个//a.hello域的管理都在总公司;第二阶段,A部门先自己搭建nameserver,然后总公司把http://a.hello域管理权转交给自建的nameserver。

A部门自建nameserver,并且在zone配置文件中指定//a.hello的权威解析服务器为自己的nameserver地址,总公司在nameserver上增加一条NS记录,把//a.hello域授权给A部门的nameserver。

我们在用bind搭建域名解析服务器里讲过,只要在zone配置文件里指定SOA记录就好:@IN SOA ns.a.hello. admin.a.hello..(……)。

在http://hello.域的nameserver上添加一条NS记录:a.hello. IN NS ns.a.hello.ns.a.hello. IN A xx.xx.xx.xx(自建nameserver的IP)。

这样当解析http://xx.a.hello.域名时,//hello. nameserver发现配置中有NS记录,就会继续递归向下解析,DNS调试工具,OPS常用的DNS调试工具有:host,nslookup,dig。

这三个命令都属于bind-utils包,也就是bind工具集,它们的使用复杂度、功能依次递增。关于它们的使用,man手册和网上有太多教程。DNS放大攻击属于DoS攻击的一种,是通过大量流量占满目标机带宽,使得目标机对正常用户的请求拒绝连接从而挂掉。

思路正常的流量攻击,hack机向目标机建立大量request-response,但这样存在的问题是需要大量的hack机器。因为服务器一般的带宽远大于家用网络,如果我们自己的家用机用来做hack机器,还没等目标机的带宽占满,我们的带宽早超载了。

原理DNS递归解析的流程比较特殊,我们可以通过几个字节的query请求,换来几百甚至几千字节的resolving应答(流量放大),并且大部分服务器不会对DNS服务器做防御。

那么hacker们只要可以伪装DNS query包的source IP,从而让DNS服务器发送大量的response到目标机,就可以实现DoS攻击。

但一般常用的DNS服务器都会对攻击请求做过滤,所以找DNS服务器漏洞也是一个问题。详细的放大攻击方法自行google。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)